Wearable Sensor Data Classification for Identifying Missing Transmission Sequence Using Tree Learning
Abstract
:1. Introduction
- Designing a concerted data transmission scheme through pre-verification for discrete sensor information identification. This process is designed for reducing the discreteness in data transmission regardless of the accumulation intervals.
- Designing a learning-based classification for discrete and continuous data sequence detection for preventing losses and diagnoses errors in WS observations. The identified errors are rectified in the consecutive sensing and transmission intervals such that maximum accumulation and sensor data are provided for healthcare record update.
- Performing a comparative analysis using defined metrics for verifying the proposed scheme’s efficiency with the other methods discussed in the related works section.
2. Related Works
3. Concerted Sensor Data Transmission Scheme
3.1. Scheme Overview
3.2. Discussion of the Proposed Scheme
4. Data Analysis
5. Results and Discussion
5.1. Data Accumulation
5.2. Classifications
5.3. Data Loss
5.4. Transmission Wait Time
5.5. Discrete Sequences Detection
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pan, D.; Liu, H.; Qu, D. Heterogeneous Sensor Data Fusion for Human Falling Detection. IEEE Access 2021, 9, 17610–17619. [Google Scholar] [CrossRef]
- Vhaduri, S.; Poellabauer, C. Opportunistic Discovery of Personal Places Using Multi-Source Sensor Data. IEEE Trans. Big Data 2018, 7, 383–396. [Google Scholar] [CrossRef]
- Jeon, E.S.; Som, A.; Shukla, A.; Hasanaj, K.; Buman, M.P.; Turaga, P. Role of Data Augmentation Strategies in Knowledge Distillation for Wearable Sensor Data. IEEE Internet Things J. 2021, 9, 12848–12860. [Google Scholar] [CrossRef]
- Lalouani, W.; Younis, M.; White-Gittens, I.; Emokpae, R.N., Jr.; Emokpae, L.E. Energy-efficient collection of wearable sensor data through predictive sampling. Smart Health 2021, 21, 100208. [Google Scholar] [CrossRef]
- Klus, L.; Klus, R.; Lohan, E.S.; Granell, C.; Talvitie, J.; Valkama, M.; Nurmi, J. Direct lightweight temporal compression for wearable sensor data. IEEE Sens. Lett. 2021, 5, 1–4. [Google Scholar] [CrossRef]
- Han, Z. Using Adaptive Wireless Transmission of Wearable Sensor Device for Target Heart Rate Monitoring of Sports Information. IEEE Sensors J. 2020, 21, 25027–25034. [Google Scholar] [CrossRef]
- He, J.; Shi, F.; Liu, Q.; Pang, Y.; He, D.; Sun, W.; Peng, L.; Yang, J.; Qu, M. Wearable superhydrophobic PPy/MXene pressure sensor based on cotton fabric with superior sensitivity for human detection and information transmission. Colloids Surf. A Physicochem. Eng. Asp. 2022, 642, 128676. [Google Scholar] [CrossRef]
- Liu, Z.; Kong, J.; Qu, M.; Zhao, G.; Zhang, C. Progress in Data Acquisition of Wearable Sensors. Biosensors 2022, 12, 889. [Google Scholar] [CrossRef]
- Idrees, A.K.; Al-Qurabat, A.K.M. Energy-efficient data transmission and aggregation protocol in periodic sensor networks based fog computing. J. Netw. Syst. Manag. 2021, 29, 4. [Google Scholar] [CrossRef]
- Xu, L. Application of wearable devices in 6G internet of things communication environment using artificial intelligence. Int. J. Syst. Assur. Eng. Manag. 2021, 12, 741–747. [Google Scholar] [CrossRef]
- Yuan, M.; Das, R.; McGlynn, E.; Ghannam, R.; Abbasi, Q.H.; Heidari, H. Wireless communication and power harvesting in wearable contact lens sensors. IEEE Sens. J. 2021, 21, 12484–12497. [Google Scholar] [CrossRef]
- Prince, J.; Andreotti, F.; De Vos, M. Multi-source ensemble learning for the remote prediction of Parkinson’s disease in the presence of source-wise missing data. IEEE Trans. Biomed. Eng. 2018, 66, 1402–1411. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Downen, R.S.; Dong, Q.; Tran, N.; LeSaux, M.; Meltzer, A.C.; Li, Z. A discreet wearable iot sensor for continuous transdermal alcohol monitoring—Challenges and opportunities. IEEE Sens. J. 2020, 21, 5322–5330. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Fong, S.; Wong, K.K.; Wu, Y.; Yang, X.-S.; Li, X. Fusing wearable and remote sensing data streams by fast incremental learning with swarm decision table for human activity recognition. Inf. Fusion 2020, 60, 41–64. [Google Scholar] [CrossRef]
- Alfarraj, O.; Tolba, A. Unsynchronized wearable sensor data analytics model for improving the performance of smart healthcare systems. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 3411–3422. [Google Scholar] [CrossRef]
- Fan, Y.; Jin, H.; Ge, Y.; Wang, N. Wearable Motion Attitude Detection and Data Analysis Based on Internet of Things. IEEE Access 2019, 8, 1327–1338. [Google Scholar] [CrossRef]
- Luo, F.; Khan, S.; Huang, Y.; Wu, K. Activity-Based Person Identification Using Multimodal Wearable Sensor Data. IEEE Internet Things J. 2023, 10, 1711–1723. [Google Scholar] [CrossRef]
- Ni, Z.; Wu, T.; Wang, T.; Sun, F.; Li, Y. Deep multi-branch two-stage regression network for accurate energy expenditure estimation with ECG and IMU data. IEEE Trans. Biomed. Eng. 2022, 69, 3224–3233. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, T.; Gan, J.; Chen, L.L.; Ning, H.; Wan, Y. Sensor Data Augmentation by Resampling in Contrastive Learning for Human Activity Recognition. IEEE Sensors J. 2022, 22, 22994–23008. [Google Scholar] [CrossRef]
- Lamooki, S.R.; Hajifar, S.; Kang, J.; Sun, H.; Megahed, F.M.; Cavuoto, L.A. A data analytic end-to-end framework for the automated quantification of ergonomic risk factors across multiple tasks using a single wearable sensor. Appl. Ergon. 2022, 102, 103732. [Google Scholar] [CrossRef]
- Steurtewagen, B.; Van den Poel, D. Adding interpretability to predictive maintenance by machine learning on sensor data. Comput. Chem. Eng. 2021, 152, 107381. [Google Scholar] [CrossRef]
- Asare, K.O.; Moshe, I.; Terhorst, Y.; Vega, J.; Hosio, S.; Baumeister, H.; Pulkki-Råback, L.; Ferreira, D. Mood ratings and digital biomarkers from smartphone and wearable data differentiates and predicts depression status: A longitudinal data analysis. Pervasive Mob. Comput. 2022, 83, 101621. [Google Scholar] [CrossRef]
- Alsiddiky, A.; Awwad, W.; Fouad, H.; Hassanein, A.S.; Soliman, A.M. Priority-based data transmission using selective decision modes in wearable sensor based healthcare applications. Comput. Commun. 2020, 160, 43–51. [Google Scholar] [CrossRef]
- Alqarni, M.A. Error-less data fusion for posture detection using smart healthcare systems and wearable sensors for patient monitoring. Pers. Ubiquitous Comput. 2021, 1, 1–12. [Google Scholar] [CrossRef]
- Kerdjidj, O.; Ramzan, N.; Ghanem, K.; Amira, A.; Chouireb, F. Fall detection and human activity classification using wearable sensors and compressed sensing. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 349–361. [Google Scholar] [CrossRef]
- Sajedi, S.N.; Maadani, M.; Moghadam, M.N. F-LEACH: A fuzzy-based data aggregation scheme for healthcare IoT systems. J. Supercomput. 2022, 78, 1030–1047. [Google Scholar] [CrossRef]
- Shi, L.F.; Qiu, C.X.; Xin, D.J.; Liu, G.X. Gait recognition via random forests based on wearable inertial measurement unit. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 5329–5340. [Google Scholar] [CrossRef]
- Shawen, N.; O’brien, M.K.; Venkatesan, S.; Lonini, L.; Simuni, T.; Hamilton, J.L.; Ghaffari, R.; Rogers, J.A.; Jayaraman, A. Role of data measurement characteristics in the accurate detection of Parkinson’s disease symptoms using wearable sensors. J. Neuroeng. Rehabil. 2020, 17, 52. [Google Scholar] [CrossRef]
- Ross, K.; Hungler, P.; Etemad, A. Unsupervised multi-modal representation learning for affective computing with multi-corpus wearable data. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 3199–3224. [Google Scholar] [CrossRef]
- Zhang, Q.; Qu, M.; Liu, X.; Cui, Y.; Hu, H.; Li, Q.; Jin, M.; Xian, J.; Nie, Z.; Zhang, C. Three-in-One Portable Electronic Sensory System Based on Low-Impedance Laser-Induced Graphene On-Skin Electrode Sensors for Electrophysiological Signal Monitoring. Adv. Mater. Interfaces 2022, 10, 2201735. [Google Scholar] [CrossRef]
- UCI Machine Learning Repository: MHEALTH Dataset Data Set. Available online: https://archive.ics.uci.edu/ml/datasets/MHEALTH%2BDataset (accessed on 8 December 2022).
Activity | 10 min | 20 min | 30 min | 40 min | 50 min | 60 min | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | λ | ψ | n | λ | ψ | n | λ | ψ | n | λ | ψ | n | λ | ψ | n | λ | ψ | |
Walking | 26 | 12 | 3 | 27 | 12 | 5 | 29 | 17 | 4 | 32 | 6 | 1 | 39 | 10 | 3 | 53 | 4 | 1 |
Running | 34 | 9 | 2 | 39 | 13 | 0 | 48 | 6 | 3 | 52 | 9 | 5 | 55 | 5 | 1 | 64 | 11 | 13 |
Sleeping | 17 | 2 | 0 | 20 | 0 | 0 | 26 | 3 | 0 | 26 | 0 | 0 | 28 | 0 | 0 | 33 | 1 | 0 |
Falling | 29 | 4 | 1 | 36 | 6 | 3 | 48 | 9 | 14 | 59 | 5 | 7 | 64 | 7 | 1 | 67 | 6 | 2 |
Jumping | 27 | 2 | 4 | 32 | 7 | 2 | 32 | 14 | 7 | 37 | 17 | 3 | 48 | 8 | 0 | 57 | 2 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurumoorthy, K.B.; Rajasekaran, A.S.; Kalirajan, K.; Gopinath, S.; Al-Turjman, F.; Kolhar, M.; Altrjman, C. Wearable Sensor Data Classification for Identifying Missing Transmission Sequence Using Tree Learning. Sensors 2023, 23, 4924. https://doi.org/10.3390/s23104924
Gurumoorthy KB, Rajasekaran AS, Kalirajan K, Gopinath S, Al-Turjman F, Kolhar M, Altrjman C. Wearable Sensor Data Classification for Identifying Missing Transmission Sequence Using Tree Learning. Sensors. 2023; 23(10):4924. https://doi.org/10.3390/s23104924
Chicago/Turabian StyleGurumoorthy, Kambatty Bojan, Arun Sekar Rajasekaran, Kaliraj Kalirajan, Samydurai Gopinath, Fadi Al-Turjman, Manjur Kolhar, and Chadi Altrjman. 2023. "Wearable Sensor Data Classification for Identifying Missing Transmission Sequence Using Tree Learning" Sensors 23, no. 10: 4924. https://doi.org/10.3390/s23104924
APA StyleGurumoorthy, K. B., Rajasekaran, A. S., Kalirajan, K., Gopinath, S., Al-Turjman, F., Kolhar, M., & Altrjman, C. (2023). Wearable Sensor Data Classification for Identifying Missing Transmission Sequence Using Tree Learning. Sensors, 23(10), 4924. https://doi.org/10.3390/s23104924