Evaluation of Correlation between Temperature of IoT Microcontroller Devices and Blockchain Energy Consumption in Wireless Sensor Networks
Abstract
:1. Introduction
2. Blockchain Technology and Energy Consumption
2.1. Public Blockchain Networks
2.2. Private Blockchain Networks
2.3. Hybrid Blockchain Networks
3. Related Work
4. Methodology
4.1. Sensor Network Architecture
4.2. Resources
4.2.1. Raspberry Pi
4.2.2. Hydrachain Blockchain Algorithm
4.2.3. Monero Blockchain Algorithm
4.2.4. Duino Coin Blockchain Algorithm
5. Results and Evaluation
5.1. Temperature Data Evaluation
5.2. Energy Consumption Data Evaluation
6. Conclusions and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anagnostakis, A.G.; Giannakeas, N.; Tsipouras, M.G.; Glavas, E.; Tzallas, A.T. IoT Micro-Blockchain Fundamentals. Sensors 2021, 21, 2784. [Google Scholar] [CrossRef] [PubMed]
- Cernian, A.; Tiganoaia, B.; Sacala, I.; Pavel, A.; Iftemi, A. PatientDataChain: A Blockchain-Based Approach to Integrate Personal Health Records. Sensors 2020, 20, 6538. [Google Scholar] [CrossRef]
- Fang, W.; Zhang, W.; Chen, W.; Pan, T.; Ni, Y.; Yang, Y. Trust-Based Attack and Defense in Wireless Sensor Networks: A Survey. Wirel. Commun. Mob. Comput. 2020, 2020, 2643546. [Google Scholar] [CrossRef]
- Fu, J.; Wang, N.; Cai, Y. Privacy-Preserving in Healthcare Blockchain Systems Based on Lightweight Message Sharing. Sensors 2020, 20, 1898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- König, L.; Korobeinikova, Y.; Tjoa, S.; Kieseberg, P. Comparing Blockchain Standards and Recommendations. Future Internet 2020, 12, 222. [Google Scholar] [CrossRef]
- Forkan, A.R.M.; Branch, P.; Jayaraman, P.P.; Ferretto, A. An Internet-of-Things Solution to Assist Independent Living and Social Connectedness in Elderly. Trans. Soc. Comput. 2019, 2, 14. [Google Scholar] [CrossRef] [Green Version]
- Dib, O. Consortium Blockchains: Overview, Applications and Challenges. Res. Gate 2018, 11, 51–64. [Google Scholar]
- Belotti, M.; Bozic, N.; Pujolle, G.; Secci, S. A Vademecum on Blockchain Technologies: When, Which, and How. IEEE Commun. Surv. Tutor. 2019, 21, 3796–3838. [Google Scholar] [CrossRef] [Green Version]
- Deep, S.; Zheng, X.; Karmakar, C.; Yu, D.; Hamey, L.G.C.; Jin, J. A Survey on Anomalous Behavior Detection for Elderly Care Using Dense-Sensing Networks. IEEE Commun. Surv. Tutor. 2020, 22, 352–370. [Google Scholar] [CrossRef]
- Coin-a Simple, Eco-Friendly, Centralized Coin. Available online: https://duinocoin.com/ (accessed on 10 April 2023).
- Feng, H.; Wang, W.; Chen, B.; Zhang, X. Evaluation on Frozen Shellfish Quality by Blockchain Based Multi-Sensors Monitoring and SVM Algorithm During Cold Storage. IEEE Access 2020, 8, 54361–54370. [Google Scholar] [CrossRef]
- Kazım Rıfat Ozyılmaz, A.Y. Designing a blockchain-based IoT infrastructure with Ethereum, Swarm and LoRa. IEEE Consum. Electron. Mag. 2018, 8, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Yang, F.; Wei, J. Experimental Evaluation of the Packet Reception Performance of LoRa. Sensors 2021, 21, 1071. [Google Scholar] [CrossRef] [PubMed]
- Bigini, G.; Freschi, V.; Lattanzi, E. A Review on Blockchain for the Internet of Medical Things: Definitions, Challenges, Applications, and Vision. Future Internet 2020, 12, 208. [Google Scholar] [CrossRef]
- Alam, S.; De, D. Analysis of Security Threats in Wireless Sensor Network. Int. J. Wirel. Mob. Netw. 2014, 6, 35–46. [Google Scholar] [CrossRef]
- She, W.; Liu, Q.; Tian, Z.; Chen, J.-S.; Wang, B.; Liu, W. Blockchain Trust Model for Malicious Node Detection in Wireless Sensor Networks. IEEE Access 2019, 7, 38947–38956. [Google Scholar] [CrossRef]
- Sedlmeir, J.; Buhl, H.U.; Fridgen, G.; Keller, R. Recent Developments in Blockchain Technology and their Impact on Energy Consumption; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Bada, A.O.; Damianou, A.; Angelopoulos, C.M.; Katos, V. Towards a Green Blockchain: A Review of Consensus Mechanisms and their Energy Consumption. In Proceedings of the 2021 17th International Conference on Distributed Computing in Sensor Systems (DCOSS), Pafos, Cyprus, 14–16 July 2021; pp. 503–511. [Google Scholar]
- Hölbl, M.; Kompara, M.; Kamišalić, A.; Nemec Zlatolas, L. A systematic review of the use of blockchain in healthcare. Symmetry 2018, 10, 470. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Tang, Y.; Wang, L. eHAPAC: A Privacy-Supported Access Control Model for IP-Enabled Wireless Sensor Networks. Sensors 2019, 19, 1513. [Google Scholar] [CrossRef] [Green Version]
- He, D.; Chan, S.; Guizani, M. Accountable and Privacy-Enhanced Access Control in Wireless Sensor Networks. IEEE Trans. Wirel. Commun. 2015, 14, 389–398. [Google Scholar] [CrossRef]
- Raspberry Pi Foundation. Teach, Learn, and Make with the Raspberry Pi Foundation. Available online: https://www.raspberrypi.org/ (accessed on 10 April 2023).
- Solving the ‘Total Supply Problem’. Available online: https://hydrachain.org/ (accessed on 10 April 2023).
- The Monero Project. Available online: https://www.getmonero.org/ (accessed on 10 April 2023).
- Zia, T.; Zomaya, A. Security Issues in Wireless Sensor Networks. In Proceedings of the 2006 International Conference on Systems and Networks Communications (ICSNC’06), Tahiti, French Polynesia, 29 October–3 November 2006; p. 40. [Google Scholar]
- Alazzawi, L.; Elkateeb, A. Performance Evaluation of the WSN Routing Protocols Scalability. J. Comput. Syst. Netw. Commun. 2008, 2008, 481046. [Google Scholar] [CrossRef] [Green Version]
- Anton, A.; Cruz, L.; Teresa, T.; Griño, M.; Marie, V.; Tungol, T.; Bautista, J.T. Development of a Low-Cost Air Quality Data Acquisition IoT-based System using Arduino Leonardo. Int. J. Eng. Manuf. 2019, 3, 1–18. [Google Scholar]
- Dai, H.N.; Zheng, Z.; Zhang, Y. Blockchain for Internet of Things: A Survey. IEEE Internet Things J. 2020, 6, 8076–8094. [Google Scholar] [CrossRef] [Green Version]
- Dwivedi, A.D.; Srivastava, G.; Dhar, S.; Singh, R. A Decentralized Privacy-Preserving Healthcare Blockchain for IoT. Sensors 2019, 19, 326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dwivedi, S.K.; Roy, P.; Karda, C.; Agrawal, S.; Amin, R.; Cheikhrouhou, O. Blockchain-Based Internet of Things and Industrial IoT: A Comprehensive Survey. Secur. Commun. Netw. 2021, 2021, 7142048. [Google Scholar] [CrossRef]
- Honar Pajooh, H.; Rashid, M.; Alam, F.; Demidenko, S. Hyperledger Fabric Blockchain for Securing the Edge Internet of Things. Sensors 2021, 21, 359. [Google Scholar] [CrossRef]
- Hussien, H.M.; Yasin, S.M.; Udzir, N.I.; Ninggal, M.I.H.; Salman, S. Blockchain technology in the healthcare industry: Trends and opportunities. J. Ind. Inf. Integr. 2021, 22, 100217. [Google Scholar] [CrossRef]
- Jo, B.W.; Khan, R.M.A.; Lee, Y.S. Hybrid Blockchain and Internet-of-Things Network for Underground Structure Health Monitoring. Sensors 2018, 18, 4268. [Google Scholar] [CrossRef] [Green Version]
- Kamran, M.; Khan, H.U.; Nisar, W.; Farooq, M.; Rehman, S.-U. Blockchain and Internet of Things: A bibliometric study. Comput. Electr. Eng. 2020, 81, 106525. [Google Scholar] [CrossRef]
- Li, S.; Song, H.; Iqbal, M. Privacy and Security for Resource-Constrained IoT Devices and Networks: Research Challenges and Opportunities. Sensors 2019, 19, 1935. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Shetty, S.; Tosh, D.; Bowden, D.; Njilla, L.; Kamhoua, C. Towards Blockchain Empowered Trusted and Accountable Data Sharing and Collaboration in Mobile Healthcare Applications. EAI Endorsed Trans. Pervasive Health Technol. 2018, 4, 159338. [Google Scholar] [CrossRef]
- Ramesh, V.K.C. Storing IOT Data Securely in a Private Ethereum Blockchain. Ph.D. Thesis, University of Nevada, Las Vegas, NV, USA, 2019. [Google Scholar]
- Reyna, A.; Martín, C.; Chen, J.; Soler, E.; Díaz, M. On blockchain and its integration with IoT. Chall. Oppor. Future Gener. Comput. Syst. 2018, 88, 173–190. [Google Scholar] [CrossRef]
- Rouhani, S.; Pourheidari, V.; Deters, R. Physical Access Control Management System Based on Permissioned Blockchain. In Proceedings of the 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada, 30 July–3 August 2018; pp. 1078–1083. [Google Scholar]
- Singh, R.; Dwivedi, A.D.; Srivastava, G. Internet of Things Based Blockchain for Temperature Monitoring and Counterfeit Pharmaceutical Prevention. Sensors 2020, 20, 3951. [Google Scholar] [CrossRef] [PubMed]
- Stamatellis, C.; Papadopoulos, P.; Pitropakis, N.; Katsikas, S.; Buchanan, W.J. A Privacy-Preserving Healthcare Framework Using Hyperledger Fabric. Sensors 2020, 20, 6587. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.; Sardaraz, M.; Muhammad, S.; Saud Khan, M. A Lightweight Authentication and Authorization Framework for Blockchain-Enabled IoT Network in Health-Informatics. Sustainability 2020, 12, 6960. [Google Scholar] [CrossRef]
- Tandon, A.; Dhir, A.; Islam, A.K.M.N.; Mäntymäki, M. Blockchain in healthcare: A systematic literature review, synthesizing framework and future research agenda. Comput. Ind. 2020, 122, 103290. [Google Scholar] [CrossRef]
- Wang, X.; Zha, X.; Ni, W.; Liu, R.P.; Guo, Y.J.; Niu, X.; Zheng, K. Survey on blockchain for Internet of Things. Comput. Commun. 2019, 136, 10–29. [Google Scholar] [CrossRef]
- Yaga, D.; Mell, P.; Roby, N.; Scarfone, K. Blockchain Technology Overview; NIST: Gaithersburg, MD, USA, 2018.
- Yang, J.; He, S.; Xu, Y.; Chen, L.; Ren, J. A Trusted Routing Scheme Using Blockchain and Reinforcement Learning for Wireless Sensor Networks. Sensors 2019, 19, 970. [Google Scholar] [CrossRef] [Green Version]
- Yin, X.C.; Liu, Z.G.; Ndibanje, B.; Nkenyereye, L.; Riazul Islam, S.M. An IoT-Based Anonymous Function for Security and Privacy in Healthcare Sensor Networks. Sensors 2019, 19, 3146. [Google Scholar] [CrossRef] [Green Version]
- Yue, X.; Wang, H.; Jin, D.; Li, M.; Jiang, W. Healthcare Data Gateways: Found Healthcare Intelligence on Blockchain with Novel Privacy Risk Control. J. Med. Syst. 2016, 40, 218. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, C.; Chai, K.K.; Poslad, S. A Challenge-Response Assisted Authorisation Scheme for Data Access in Permissioned Blockchains. Sensors 2020, 20, 4681. [Google Scholar] [CrossRef]
Blockchain Node | Hydrachain | Monero | Duino Coin |
---|---|---|---|
Node 01 | 65.49 °C | 59.68 °C | 82.85 °C |
Node 02 | 66.32 °C | 59.14 °C | 83.28 °C |
Node 03 | 66.53 °C | 58.76 °C | 83.83 °C |
Node 04 | 66.62 °C | 58.52 °C | 83.83 °C |
Node 05 | 68.01 °C | 58.32 °C | 83.91 °C |
Node 06 | 68.47 °C | 58.45 °C | 83.97 °C |
Node 07 | 68.49 °C | 58.22 °C | 83.85 °C |
Blockchain Node | Hydrachain | Monero | Duino Coin |
---|---|---|---|
Node 01 | 281.4 mW | 267.6 mW | 340.4 mW |
Node 02 | 281.6 mW | 267.4 mW | 341.2 mW |
Node 03 | 281.6 mW | 267 mW | 341.2 mW |
Node 04 | 281 mW | 266.4 mW | 340.6 mW |
Node 05 | 281.6 mW | 267.6 mW | 341.4 mW |
Node 06 | 282 mW | 267.2 mW | 340.6 mW |
Node 07 | 281.4 mW | 267.2 mW | 341 mW |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arachchige, K.G.; Branch, P.; But, J. Evaluation of Correlation between Temperature of IoT Microcontroller Devices and Blockchain Energy Consumption in Wireless Sensor Networks. Sensors 2023, 23, 6265. https://doi.org/10.3390/s23146265
Arachchige KG, Branch P, But J. Evaluation of Correlation between Temperature of IoT Microcontroller Devices and Blockchain Energy Consumption in Wireless Sensor Networks. Sensors. 2023; 23(14):6265. https://doi.org/10.3390/s23146265
Chicago/Turabian StyleArachchige, Kithmini Godewatte, Philip Branch, and Jason But. 2023. "Evaluation of Correlation between Temperature of IoT Microcontroller Devices and Blockchain Energy Consumption in Wireless Sensor Networks" Sensors 23, no. 14: 6265. https://doi.org/10.3390/s23146265
APA StyleArachchige, K. G., Branch, P., & But, J. (2023). Evaluation of Correlation between Temperature of IoT Microcontroller Devices and Blockchain Energy Consumption in Wireless Sensor Networks. Sensors, 23(14), 6265. https://doi.org/10.3390/s23146265