A Compact Snake Optimization Algorithm in the Application of WKNN Fingerprint Localization
Abstract
:1. Introduction
2. Related Work
2.1. Snake Optimizer
2.2. RSSI Localization
2.3. Fingerprint Localization
3. Application of cSO for Partition WKNN Fingerprint Localization
3.1. Compact Strategy
Algorithm 1. cSO pseudocode |
|
3.2. Partition Method
3.3. A Combination of the cSO Algorithm with RSSI Localization and Partition WKNN Fingerprint Localization
4. Results and Discussion
4.1. Simulation Results on CEC2013
4.2. Simulation Results of the New Localization Method
4.2.1. RSSI Localization Experiment
4.2.2. Partition Experiment
4.2.3. Density Experiment
4.2.4. Noise Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PSO | Particle swarm optimization |
APSO | Adaptive particle swarm optimization |
cPSO | Compact particle swarm optimization |
CLPSO | Comprehensive learning particle swarm optimization |
WOA | Whale optimization algorithm |
ABC | Artificial bee colony |
BH | Black hole |
OBH | Opposition-based learning black hole |
LEBH | Levy flight edge regeneration black hole |
WSN | Wireless sensor network |
GPS | Global positioning system |
AOA | Angle of arrival |
TDOA | Time difference of arrival |
RSSI | Received signal strength indicator |
NLOS | Non-line of sight |
AP | Access point |
RP | Reference point |
TP | Test point |
SO | Snake optimization |
cSO | Compact snake optimization |
FMO | Fish migration optimization |
GWO | Grey wolf optimization |
DE | Differential evolution |
WKNN | Weighted k-nearest neighbor |
NN | Nearest neighbor |
KNN | K-nearest neighbor |
MD | Manhattan distance |
ED | Euclidean distance |
Probability distribution function | |
CDF | Cumulative distribution function |
References
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; IEEE: Perth, WA, Australia, 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Chu, S.C.; Roddick, J.F.; Pan, J.S. A parallel particle swarm optimization algorithm with communication strategies. J. Inf. Sci. Eng 2005, 21, 809–818. [Google Scholar]
- Lee, S.H.; Cheng, C.H.; Lin, C.C.; Huang, Y.F. PSO-Based Target Localization and Tracking in Wireless Sensor Networks. Electronics 2023, 12, 905. [Google Scholar] [CrossRef]
- Zhan, Z.H.; Zhang, J.; Li, Y.; Chung, H.S.H. Adaptive particle swarm optimization. IEEE Trans. Syst. Man, Cybern. Part B (Cybern.) 2009, 39, 1362–1381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neri, F.; Mininno, E.; Iacca, G. Compact particle swarm optimization. Inf. Sci. 2013, 239, 96–121. [Google Scholar] [CrossRef]
- Zheng, W.M.; Liu, N.; Chai, Q.W.; Chu, S.C. A Compact Adaptive Particle Swarm Optimization Algorithm in the Application of the Mobile Sensor Localization. Wirel. Commun. Mob. Comput. 2021, 2021, 1–15. [Google Scholar] [CrossRef]
- Liang, J.J.; Qin, A.K.; Suganthan, P.N.; Baskar, S. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 2006, 10, 281–295. [Google Scholar] [CrossRef]
- Hu, P.; Pan, J.S.; Chu, S.C.; Sun, C. Multi-surrogate assisted binary particle swarm optimization algorithm and its application for feature selection. Appl. Soft Comput. 2022, 121, 108736. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Karaboga, D.; Basturk, B. On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 2008, 8, 687–697. [Google Scholar] [CrossRef]
- Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184. [Google Scholar] [CrossRef]
- Zheng, W.M.; Xu, S.L.; Pan, J.S.; Chai, Q.W.; Hu, P. An Opposition-Based Learning Black Hole Algorithm for Localization of Mobile Sensor Network. Sensors 2023, 23, 4520. [Google Scholar] [CrossRef]
- Zheng, W.M.; Xu, S.L.; Pan, J.S.; Chai, Q.W.; Hu, P. A Compact Black Hole Algorithm for Localization of Mobile Sensor Network. 2022. Available online: https://www.researchsquare.com/article/rs-1343477/v1 (accessed on 29 June 2023).
- Zheng, W.M.; Liu, N.; Chai, Q.W.; Liu, Y. Application of improved black hole algorithm in prolonging the lifetime of wireless sensor network. Complex Intell. Syst. 2023, 1–13. [Google Scholar] [CrossRef]
- Pan, J.S.; Hu, P.; Snášel, V.; Chu, S.C. A survey on binary metaheuristic algorithms and their engineering applications. Artif. Intell. Rev. 2022, 56, 6101–6167. [Google Scholar] [CrossRef]
- Sadeghi, S.; Soltanmohammadlou, N.; Nasirzadeh, F. Applications of wireless sensor networks to improve occupational safety and health in underground mines. J. Saf. Res. 2022, 83, 8–25. [Google Scholar] [CrossRef]
- Patil, M.B.K.; Sankapal, M.S.; Mulla, M.R.M. Wsn Based Home Automation System. Int. J. Innov. Eng. Res. Technol. 2016, 3, 1–3. [Google Scholar]
- Bayih, A.Z.; Morales, J.; Assabie, Y.; de By, R.A. Utilization of Internet of Things and Wireless Sensor Networks for Sustainable Smallholder Agriculture. Sensors 2022, 22, 3273. [Google Scholar] [CrossRef]
- Dampage, U.; Bandaranayake, L.; Wanasinghe, R.; Kottahachchi, K.; Jayasanka, B. Forest fire detection system using wireless sensor networks and machine learning. Sci. Rep. 2022, 12, 46. [Google Scholar] [CrossRef]
- Ouni, R.; Saleem, K. Framework for Sustainable Wireless Sensor Network Based Environmental Monitoring. Sustainability 2022, 14, 8356. [Google Scholar] [CrossRef]
- Basiri, A.; Lohan, E.S.; Moore, T.; Winstanley, A.; Peltola, P.; Hill, C.; Amirian, P.; e Silva, P.F. Indoor location based services challenges, requirements and usability of current solutions. Comput. Sci. Rev. 2017, 24, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Xiao, J.; Li, C. An Improved WKNN Algorithm Based on Flexible K Selection Strategy and Distance Compensation for Indoor Localization. Arab. J. Sci. Eng. 2022, 47, 13917–13925. [Google Scholar] [CrossRef]
- Niculescu, D.; Nath, B. Ad hoc positioning system (APS) using AOA. In Proceedings of the IEEE INFOCOM 2003, Twenty-Second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No. 03CH37428), San Francisco, CA, USA, 30 March–3 April 2003; Volume 3, pp. 1734–1743. [Google Scholar]
- Kaune, R. Accuracy studies for TDOA and TOA localization. In Proceedings of the 2012 15th International Conference on Information Fusion, Singapore, 9–12 July 2012; IEEE: Singapore, 2012; pp. 408–415. [Google Scholar]
- Malyavej, V.; Kumkeaw, W.; Aorpimai, M. Indoor robot localization by RSSI/IMU sensor fusion. In Proceedings of the 2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Krabi, Thailand, 15–17 May 2013; pp. 1–6. [Google Scholar]
- Cheng, L.; Wu, C.D.; Zhang, Y.Z. Indoor robot localization based on wireless sensor networks. IEEE Trans. Consum. Electron. 2011, 57, 1099–1104. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, R.; Liu, Z.; Guo, G.; Ye, F.; Chen, L. Wi-Fi fine time measurement: Data analysis and processing for indoor localisation. J. Navig. 2020, 73, 1106–1128. [Google Scholar] [CrossRef]
- Jun, J.; He, L.; Gu, Y.; Jiang, W.; Kushwaha, G.; Vipin, A.; Cheng, L.; Liu, C.; Zhu, T. Low-overhead WiFi fingerprinting. IEEE Trans. Mob. Comput. 2017, 17, 590–603. [Google Scholar] [CrossRef]
- Ma, Z.; Wu, B.; Poslad, S. A WiFi RSSI ranking fingerprint positioning system and its application to indoor activities of daily living recognition. Int. J. Distrib. Sens. Netw. 2019, 15, 1550147719837916. [Google Scholar] [CrossRef]
- Oh, J.; Kim, J. AdaptiveK-nearest neighbour algorithm for WiFi fingerprint positioning. Ict Express 2018, 4, 91–94. [Google Scholar] [CrossRef]
- Hashim, F.A.; Hussien, A.G. Snake Optimizer: A novel meta-heuristic optimization algorithm. Knowl.-Based Syst. 2022, 242, 108320. [Google Scholar] [CrossRef]
- Liu, X.; Tian, M.; Zhou, J.; Liang, J. An efficient coverage method for SEMWSNs based on adaptive chaotic Gaussian variant snake optimization algorithm. Math. Biosci. Eng. MBE 2022, 20, 3191–3215. [Google Scholar] [CrossRef]
- Fu, H.; Shi, H.; Xu, Y.; Shao, J. Research on Gas Outburst Prediction Model Based on Multiple Strategy Fusion Improved Snake Optimization Algorithm With Temporal Convolutional Network. IEEE Access 2022, 10, 117973–117984. [Google Scholar] [CrossRef]
- Li, T.; Deng, Z.; Wang, G.; Yan, J. Time Difference of Arrival Location Method Based on Improved Snake Optimization Algorithm. In Proceedings of the 2022 IEEE 8th International Conference on Computer and Communications (ICCC), Chengdu, China, 9–12 December 2022; IEEE: Chengdu, China, 2022; pp. 482–486. [Google Scholar]
- Zanca, G.; Zorzi, F.; Zanella, A.; Zorzi, M. Experimental comparison of RSSI-based localization algorithms for indoor wireless sensor networks. In Proceedings of the Workshop on Real-World Wireless Sensor Networks, Glasgow, Scotland, 1 April 2008; pp. 1–5. [Google Scholar]
- Jondhale, S.R.; Mohan, V.; Sharma, B.B.; Lloret, J.; Athawale, S.V. Support vector regression for mobile target localization in indoor environments. Sensors 2022, 22, 358. [Google Scholar] [CrossRef]
- Shin, K.; McConville, R.; Metatla, O.; Chang, M.; Han, C.; Lee, J.; Roudaut, A. Outdoor localization using BLE RSSI and accessible pedestrian signals for the visually impaired at intersections. Sensors 2022, 22, 371. [Google Scholar] [CrossRef]
- Hoang, M.T.; Yuen, B.; Dong, X.; Lu, T.; Westendorp, R.; Reddy, K. Recurrent neural networks for accurate RSSI indoor localization. IEEE Internet Things J. 2019, 6, 10639–10651. [Google Scholar] [CrossRef] [Green Version]
- Shokry, A.; Youssef, M. A Quantum Algorithm for RF-based Fingerprinting Localization Systems. In Proceedings of the 2022 IEEE 47th Conference on Local Computer Networks (LCN), Clearwater Beach, FL, USA, 22–25 October 2012; pp. 18–25. [Google Scholar] [CrossRef]
- Liang, J.J.; Qu, B.; Suganthan, P.N.; Hernández-Díaz, A.G. Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session on Real-Parameter Optimization; Technical Report; Computational Intelligence Laboratory, Zhengzhou University: Zhengzhou, China; Nanyang Technological University: Singapore, 2013; Volume 201212, pp. 281–295. [Google Scholar]
Function | cSO | SO | ABC | FMO | GWO | DE | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
< | > | > | > | < | |||||||
< | > | < | > | > | |||||||
= | > | > | > | < | |||||||
> | > | > | > | > | |||||||
> | > | > | > | > | |||||||
> | > | < | > | < | |||||||
> | > | > | > | > | |||||||
> | > | > | > | > | |||||||
> | > | > | = | > | |||||||
< | > | < | > | < | |||||||
> | > | > | > | = | |||||||
< | > | > | < | = | |||||||
> | > | > | > | > | |||||||
< | > | > | > | < | |||||||
> | > | > | < | > | |||||||
> | > | > | > | > | |||||||
> | > | > | > | > | |||||||
> | > | > | > | > | |||||||
< | > | > | > | < | |||||||
> | > | > | > | > | |||||||
< | > | > | > | < | |||||||
< | > | > | > | < | |||||||
> | > | > | < | > | |||||||
> | > | > | < | > | |||||||
< | > | > | < | < | |||||||
> | > | > | > | > | |||||||
< | > | > | < | > | |||||||
> | > | > | > | < | |||||||
− |
Coordinates | cSO | SO | GWO | ABC | FMO | DE |
---|---|---|---|---|---|---|
(88,265) | 4.743 m | 5.564 m | 7.045 m | 5.122 m | 7.128 m | 6.173 m |
(95,272) | 17.040 m | 20.676 m | 28.224 m | 28.905 m | 21.632 m | 30.540 m |
(297,161) | 16.162 m | 18.501 m | 21.414 m | 29.230 m | 25.908 m | 27.455 m |
(184,98) | 10.663 m | 12.734 m | 12.104 m | 13.702 m | 12.880 m | 13.986 m |
(115,84) | 6.635 m | 9.897 m | 9.558 m | 8.146 m | 8.753 m | 9.798 m |
(271,56) | 9.71 m | 12.344 m | 13.175 m | 12.426 m | 11.441 m | 11.930 m |
Partitions | WKNN | RSSI | cSO−RSSI | New Method |
---|---|---|---|---|
4 | 11.33 m | 17.37 m | 11.40 m | 8.46 m |
5 | 18.58 m | 18.91 m | 11.91 m | 11.94 m |
6 | 15.50 m | 17.12 m | 11.51 m | 9.91 m |
7 | 25.75 m | 17.10 m | 11.88 m | 15.14 m |
8 | 18.63 m | 16.42 m | 11.62 m | 11.84 m |
9 | 31.16 m | 18.12 m | 12.04 m | 17.73 m |
Density | WKNN | RSSI | cSO−RSSI | New Method |
---|---|---|---|---|
1 | 11.29 m | 18.76 m | 12.94 m | 9.53 m |
2 | 12.77 m | 17.78 m | 12.37 m | 9.44 m |
3 | 11.84 m | 16.82 m | 12.02 m | 8.60 m |
4 | 14.04 m | 16.85 m | 11.00 m | 9.42 m |
5 | 16.25 m | 11.87 m | 11.11 m | 8.92 m |
6 | 13.20 m | 16.88 m | 11.81 m | 9.24 m |
Noise | WKNN | RSSI | cSO−RSSI | New Method |
---|---|---|---|---|
3 | 10.21 m | 12.81 m | 9.06 m | 6.94 m |
4 | 9.66 m | 14.06 m | 10.05 m | 7.14 m |
5 | 12.46 m | 14.60 m | 10.70 m | 8.48 m |
6 | 13.45 m | 17.30 m | 12.54 m | 8.88 m |
7 | 14.46 m | 18.47 m | 13.05 m | 10.57 m |
8 | 17.58 m | 20.39 m | 14.33 m | 12.57 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, W.; Pang, S.; Liu, N.; Chai, Q.; Xu, L. A Compact Snake Optimization Algorithm in the Application of WKNN Fingerprint Localization. Sensors 2023, 23, 6282. https://doi.org/10.3390/s23146282
Zheng W, Pang S, Liu N, Chai Q, Xu L. A Compact Snake Optimization Algorithm in the Application of WKNN Fingerprint Localization. Sensors. 2023; 23(14):6282. https://doi.org/10.3390/s23146282
Chicago/Turabian StyleZheng, Weimin, Senyuan Pang, Ning Liu, Qingwei Chai, and Lindong Xu. 2023. "A Compact Snake Optimization Algorithm in the Application of WKNN Fingerprint Localization" Sensors 23, no. 14: 6282. https://doi.org/10.3390/s23146282
APA StyleZheng, W., Pang, S., Liu, N., Chai, Q., & Xu, L. (2023). A Compact Snake Optimization Algorithm in the Application of WKNN Fingerprint Localization. Sensors, 23(14), 6282. https://doi.org/10.3390/s23146282