Inertial Sensor Technologies—Their Role in Equine Gait Analysis, a Review
Abstract
:1. Introduction
2. Inertial Measurement Units
3. Locomotor Analysis in Sound Horses Using IMUs
4. Lameness Detection Using IMUs
5. Horse–Rider Interaction and IMUs
6. Tranquilizer, Sedative and Analgesic Agents and IMUs
7. Discussion and Overall Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Broster, C.E.; Burn, C.C.; Barr, A.R.; Whay, H.R. The range and prevalence of pathological abnormalities associated with lameness in working horses from developing countries. Equine Vet. J. 2009, 41, 474–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhodin, M.; Egenvall, A.; Haubro Andersen, P.; Pfau, T. Head and pelvic movement asymmetries at trot in riding horses in training and perceived as free from lameness by the owner. PLoS ONE 2017, 12, e0176253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez Alvarez, C.B.; Bobbert, M.F.; Lamers, L.; Johnston, C.; Back, W.; van Weeren, P.R. The effect of induced hindlimb lameness on thoracolumbar kinematics during treadmill locomotion. Equine Vet. J. 2008, 40, 147–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardeman, A.M.; Byström, A.; Roepstorff, L.; Swagemakers, J.H.; van Weeren, P.R.; Serra Bragança, F.M. Range of motion and between-measurement variation of spinal kinematics in sound horses at trot on the straight line and on the lunge. PLoS ONE 2020, 15, e0222822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, N.A.; Pandy, M.G.; Kawcak, C.E.; McIlwraith, C.W. Force- and moment-generating capacities of muscles in the distal forelimb of the horse. J. Anat. 2003, 203, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Roepstorff, L.; Johnston, C.; Drevemo, S.; Gustås, P. Influence of draw reins on ground reaction forces at the trot. Equine Vet. J. Suppl. 2002, 34, 349–352. [Google Scholar] [CrossRef] [PubMed]
- Hodson, E.; Clayton, H.M.; Lanovaz, J.L. The forelimb in walking horses: 1. Kinematics and ground reaction forces. Equine Vet. J. 2000, 32, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Meershoek, L.S.; Lanovaz, J.L.; Schamhardt, H.C.; Clayton, H.M. Calculated forelimb flexor tendon forces in horses with experimentally induced superficial digital flexor tendinitis and the effects of application of heel wedges. Am. J. Vet. Res. 2002, 63, 432–437. [Google Scholar] [CrossRef]
- Williams, G.E. Locomotor characteristics of horses with navicular disease. Am. J. Vet. Res. 2001, 62, 206–210. [Google Scholar] [CrossRef]
- Back, W.; MacAllister, C.G.; van Heel, M.C.V.; Pollmeier, M.; Hanson, P.D. Vertical Frontlimb Ground Reaction Forces of Sound and Lame Warmbloods Differ from Those in Quarter Horses. J. Equine Vet. Sci. 2007, 27, 123–129. [Google Scholar] [CrossRef]
- Bell, R.P.; Reed, S.K.; Schoonover, M.J.; Whitfield, C.T.; Yonezawa, Y.; Maki, H.; Pai, P.F.; Keegan, K.G. Associations of force plate and body-mounted inertial sensor measurements for identification of hind limb lameness in horses. Am. J. Vet. Res. 2016, 77, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Leelamankong, P.; Estrada, R.; Mählmann, K.; Rungsri, P.; Lischer, C. Agreement among equine veterinarians and between equine veterinarians and inertial sensor system during clinical examination of hindlimb lameness in horses. Equine Vet. J. 2020, 52, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Chateau, H.; Robin, D.; Simonelli, T.; Pacquet, L.; Pourcelot, P.; Falala, S.; Denoix, J.M.; Crevier-Denoix, N. Design and validation of a dynamometric horseshoe for the measurement of three-dimensional ground reaction force on a moving horse. J. Biomech. 2009, 42, 336–340. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, R.M., Jr.; Gaughan, E.M.; Roush, J.K.; Skaggs, C.L. Effects of subject velocity on ground reaction force measurements and stance times in clinically normal horses at the walk and trot. Am. J. Vet. Res. 1996, 57, 7–11. [Google Scholar]
- Clayton, H.M. The force plate: Established technology, new applications. Vet. J. 2005, 169, 15–16. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.E.; Silverman, B.W.; Wilson, A.M.; Goodship, A.E. Disease-specific changes in equine ground reaction force data documented by use of principal component analysis. Am. J. Vet. Res. 1999, 60, 549–555. [Google Scholar] [PubMed]
- Eichelberger, P.; Ferraro, M.; Minder, U.; Denton, T.; Blasimann, A.; Krause, F.; Baur, H. Analysis of accuracy in optical motion capture—A protocol for laboratory setup evaluation. J. Biomech. 2016, 49, 2085–2088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhodin, M.; Persson-Sjodin, E.; Egenvall, A.; Serra Bragança, F.M.; Pfau, T.; Roepstorff, L.; Weishaupt, M.A.; Thomsen, M.H.; van Weeren, P.R.; Hernlund, E. Vertical movement symmetry of the withers in horses with induced forelimb and hindlimb lameness at trot. Equine Vet. J. 2018, 50, 818–824. [Google Scholar] [CrossRef]
- Windolf, M.; Götzen, N.; Morlock, M. Systematic accuracy and precision analysis of video motion capturing systems—Exemplified on the Vicon-460 system. J. Biomech. 2008, 41, 2776–2780. [Google Scholar] [CrossRef] [PubMed]
- Hardeman, A.M.; Van Weeren, P.R.; Serra Bragança, F.M.; Warmerdam, H.; Bok, H.G.J. A first exploration of perceived pros and cons of quantitative gait analysis in equine clinical practice. Equine Vet. Ed. 2022, 34, e438–e444. [Google Scholar] [CrossRef]
- Pfau, T.; Fiske-Jackson, A.; Rhodin, M. Quantitative assessment of gait parameters in horses: Useful for aiding clinical decision making? Equine Vet. Ed. 2016, 28, 209–215. [Google Scholar] [CrossRef]
- Pfau, T.; Robilliard, J.J.; Weller, R.; Jespers, K.; Eliashar, E.; Wilson, A.M. Assessment of mild hindlimb lameness during over ground locomotion using linear discriminant analysis of inertial sensor data. Equine Vet. J. 2007, 39, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Warner, S.M.; Koch, T.O.; Pfau, T. Inertial sensors for assessment of back movement in horses during locomotion over ground. Equine Vet. J. Suppl. 2010, 42, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Egan, S.; Brama, P.A.J.; Goulding, C.; McKeown, D.; Kearney, C.M.; McGrath, D. The Feasibility of Equine Field-Based Postural Sway Analysis Using a Single Inertial Sensor. Sensors 2021, 21, 1286. [Google Scholar] [CrossRef] [PubMed]
- Crecan, C.M.; Morar, I.A.; Lupsan, A.F.; Repciuc, C.C.; Rus, M.A.; Pestean, C.P. Development of a Novel Approach for Detection of Equine Lameness Based on Inertial Sensors: A Preliminary Study. Sensors 2022, 22, 7082. [Google Scholar] [CrossRef]
- Moorman, V.J.; Reiser, R.F., II; Mahaffey, C.A.; Peterson, M.L.; McIlwraith, C.W.; Kawcak, C.E. Use of an inertial measurement unit to assess the effect of forelimb lameness on three-dimensional hoof orientation in horses at a walk and trot. Am. J. Vet. Res. 2014, 75, 800–808. [Google Scholar] [CrossRef] [PubMed]
- Pfau, T.; Starke, S.D.; Tröster, S.; Roepstorff, L. Estimation of vertical tuber coxae movement in the horse from a single inertial measurement unit. Vet. J. 2013, 198, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Bosch, S.; Serra Bragança, F.; Marin-Perianu, M.; Marin-Perianu, R.; van der Zwaag, B.J.; Voskamp, J.; Back, W.; van Weeren, R.; Havinga, P. EquiMoves: A Wireless Networked Inertial Measurement System for Objective Examination of Horse Gait. Sensors 2018, 18, 850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckardt, F.; Witte, K. Horse–Rider Interaction: A New Method Based on Inertial Measurement Units. J. Equine Vet. Sci. 2017, 55, 1–8. [Google Scholar] [CrossRef]
- Keegan, K.G.; Wilson, D.A.; Kramer, J.; Reed, S.K.; Yonezawa, Y.; Maki, H.; Pai, P.F.; Lopes, M.A. Comparison of a body-mounted inertial sensor system-based method with subjective evaluation for detection of lameness in horses. Am. J. Vet. Res. 2013, 74, 17–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.N.; Byeon, Y.H.; Kwak, K.C. Design of Ensemble Stacked Auto-Encoder for Classification of Horse Gaits with MEMS Inertial Sensor Technology. Micromachines 2018, 9, 411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, J.F.; Lund, D.G.; Voute, L.C. Use of a wireless, inertial sensor-based system to objectively evaluate flexion tests in the horse. Equine Vet. J. Suppl. 2012, 44, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Clayton, H.M.; Hobbs, S.-J. The role of biomechanical analysis of horse and rider in equitation science. Appl. Anim. Behav. Sci. 2017, 190, 123–132. [Google Scholar] [CrossRef]
- Pfau, T.; Weller, R. Comparison of a standalone consumer grade smartphone with a specialist inertial measurement unit for quantification of movement symmetry in the trotting horse. Equine Vet. J. 2017, 49, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Hardeman, A.M.; Egenvall, A.; Serra Bragança, F.M.; Swagemakers, J.H.; Koene, M.H.W.; Roepstorff, L.; van Weeren, R.; Byström, A. Visual lameness assessment in comparison to quantitative gait analysis data in horses. Equine Vet. J. 2022, 54, 1076–1085. [Google Scholar] [CrossRef] [PubMed]
- Valldeperes, A.; Altuna, X.; Martinez-Basterra, Z.; Rossi-Izquierdo, M.; Benitez-Rosario, J.; Perez-Fernandez, N.; Rey-Martinez, J. Wireless inertial measurement unit (IMU)-based posturography. Eur. Arch. Oto-Rhino-Laryngol. 2019, 276, 3057–3065. [Google Scholar] [CrossRef] [PubMed]
- Gawrońska, A.; Zamysłowska-Szmytke, E.; Janc, M.; Kotas, R.; Kamiński, M.; Marciniak, P.; Tylman, W.; Woźniak, S.; Napieralski, J.; Sakowicz, B.; et al. Innovative System for Evaluation and Rehabilitation of Human Imbalance. Otolaryngol. Polska 2022, 76, 7–11. [Google Scholar] [CrossRef]
- Ghislieri, M.; Gastaldi, L.; Pastorelli, S.; Tadano, S.; Agostini, V. Wearable Inertial Sensors to Assess Standing Balance: A Systematic Review. Sensors 2019, 19, 4075. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, R.D.; Lichtwark, G.A. Evaluation of an inertial measurement unit-based approach for determining centre-of-mass movement during non-seated cycling. J. Biomech. 2021, 126, 110441. [Google Scholar] [CrossRef]
- Pillitteri, G.; Thomas, E.; Battaglia, G.; Navarra, G.A.; Scardina, A.; Gammino, V.; Ricchiari, D.; Bellafiore, M. Validity and Reliability of an Inertial Sensor Device for Specific Running Patterns in Soccer. Sensors 2021, 21, 7255. [Google Scholar] [CrossRef]
- Ruiz-García, I.; Navarro-Marchal, I.; Ocaña-Wilhelmi, J.; Palma, A.J.; Gómez-López, P.J.; Carvajal, M.A. Development and Evaluation of a Low-Drift Inertial Sensor-Based System for Analysis of Alpine Skiing Performance. Sensors 2021, 21, 2480. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.J.; He, C.; Gu, M.H.; Xu, J.; Huang, X.L. Kinematic Evaluation via Inertial Measurement Unit Associated with Upper Extremity Motor Function in Subacute Stroke: A Cross-Sectional Study. J. Healthc. Eng. 2021, 2021, 4071645. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Obonyo, E.; Bilén, S.G. Wearable Inertial Measurement Unit Sensing System for Musculoskeletal Disorders Prevention in Construction. Sensors 2021, 21, 1324. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.; Roth, N.; Ghassemi, N.H.; Hannink, J.; Seel, T.; Klucken, J.; Gassner, H.; Eskofier, B.M. Development and clinical validation of inertial sensor-based gait-clustering methods in Parkinson’s disease. J. Neuroeng. Rehabil. 2019, 16, 77. [Google Scholar] [CrossRef]
- Brighton, C.; Olsen, E.; Pfau, T. Is a standalone inertial measurement unit accurate and precise enough for quantification of movement symmetry in the horse? Comput. Methods Biomech. Biomed. Eng 2015, 18, 527–532. [Google Scholar] [CrossRef] [Green Version]
- Hatrisse, C.; Macaire, C.; Sapone, M.; Hebert, C.; Hanne-Poujade, S.; De Azevedo, E.; Marin, F.; Martin, P.; Chateau, H. Stance Phase Detection by Inertial Measurement Unit Placed on the Metacarpus of Horses Trotting on Hard and Soft Straight Lines and Circles. Sensors 2022, 22, 703. [Google Scholar] [CrossRef]
- Serra Bragança, F.M.; Broomé, S.; Rhodin, M.; Björnsdóttir, S.; Gunnarsson, V.; Voskamp, J.P.; Persson-Sjodin, E.; Back, W.; Lindgren, G.; Novoa-Bravo, M.; et al. Improving gait classification in horses by using inertial measurement unit (IMU) generated data and machine learning. Sci. Rep. 2020, 10, 17785. [Google Scholar] [CrossRef]
- Roepstorff, C.; Dittmann, M.T.; Arpagaus, S.; Serra Bragança, F.M.; Hardeman, A.; Persson-Sjödin, E.; Roepstorff, L.; Gmel, A.I.; Weishaupt, M.A. Reliable and clinically applicable gait event classification using upper body motion in walking and trotting horses. J. Biomech. 2021, 114, 110146. [Google Scholar] [CrossRef]
- Equinosis LLC. Find a Vet; Equinosis LLC: Columbia, MO, USA, 2019. [Google Scholar]
- Bragança, F.M.; Bosch, S.; Voskamp, J.P.; Marin-Perianu, M.; Van der Zwaag, B.J.; Vernooij, J.C.M.; van Weeren, P.R.; Back, W. Validation of distal limb mounted inertial measurement unit sensors for stride detection in Warmblood horses at walk and trot. Equine Vet. J. 2017, 49, 545–551. [Google Scholar] [CrossRef] [Green Version]
- Tijssen, M.; Hernlund, E.; Rhodin, M.; Bosch, S.; Voskamp, J.P.; Nielen, M.; Serra Braganςa, F.M. Automatic hoof-on and -off detection in horses using hoof-mounted inertial measurement unit sensors. PLoS ONE 2020, 15, e0233266. [Google Scholar] [CrossRef]
- Briggs, E.V.; Mazzà, C. Automatic methods of hoof-on and -off detection in horses using wearable inertial sensors during walk and trot on asphalt, sand and grass. PLoS ONE 2021, 16, e0254813. [Google Scholar] [CrossRef]
- Steinke, S.L.; Montgomery, J.B.; Barden, J.M. Accelerometry-Based Step Count Validation for Horse Movement Analysis During Stall Confinement. Front. Vet. Sci. 2021, 8, 681213. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.J.; Luck, L.M.; Keshwani, J.; Pitla, S.K.; Karr, L.K. Location on the Body of a Wearable Accelerometer Affects Accuracy of Data for Identifying Equine Gaits. J. Equine Vet. Sci. 2018, 63, 1–7. [Google Scholar] [CrossRef]
- Hagen, J.; Bos, R.; Brouwer, J.; Lux, S.; Jung, F.T. Influence of trimming, hoof angle and shoeing on breakover duration in sound horses examined with hoof-mounted inertial sensors. Vet. Rec. 2021, 189, e450. [Google Scholar] [CrossRef] [PubMed]
- Sapone, M.; Martin, P.; Ben Mansour, K.; Château, H.; Marin, F. Comparison of Trotting Stance Detection Methods from an Inertial Measurement Unit Mounted on the Horse’s Limb. Sensors 2020, 20, 2983. [Google Scholar] [CrossRef]
- Sapone, M.; Martin, P.; Ben Mansour, K.; Chateau, H.; Marin, F. The Protraction and Retraction Angles of Horse Limbs: An Estimation during Trotting Using Inertial Sensors. Sensors 2021, 21, 3792. [Google Scholar] [CrossRef] [PubMed]
- Olsen, E.; Andersen, P.H.; Pfau, T. Accuracy and precision of equine gait event detection during walking with limb and trunk mounted inertial sensors. Sensors 2012, 12, 8145–8156. [Google Scholar] [CrossRef]
- Starke, S.D.; Witte, T.H.; May, S.A.; Pfau, T. Accuracy and precision of hind limb foot contact timings of horses determined using a pelvis-mounted inertial measurement unit. J. Biomech. 2012, 45, 1522–1528. [Google Scholar] [CrossRef]
- Serra Bragança, F.M.; Rhodin, M.; van Weeren, P.R. On the brink of daily clinical application of objective gait analysis: What evidence do we have so far from studies using an induced lameness model? Vet. J. 2018, 234, 11–23. [Google Scholar] [CrossRef] [Green Version]
- Hammarberg, M.; Egenvall, A.; Pfau, T.; Rhodin, M. Rater agreement of visual lameness assessment in horses during lungeing. Equine Vet. J. 2016, 48, 78–82. [Google Scholar] [CrossRef] [Green Version]
- Keegan, K.G.; Dent, E.V.; Wilson, D.A.; Janicek, J.; Kramer, J.; Lacarrubba, A.; Walsh, D.M.; Cassells, M.W.; Esther, T.M.; Schiltz, P.; et al. Repeatability of subjective evaluation of lameness in horses. Equine Vet. J. 2010, 42, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Parkes, R.S.; Weller, R.; Groth, A.M.; May, S.; Pfau, T. Evidence of the development of ‘domain-restricted’ expertise in the recognition of asymmetric motion characteristics of hindlimb lameness in the horse. Equine Vet. J. 2009, 41, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Zetterberg, E.; Leclercq, A.; Persson-Sjodin, E.; Lundblad, J.; Haubro Andersen, P.; Hernlund, E.; Rhodin, M. Prevalence of vertical movement asymmetries at trot in Standardbred and Swedish Warmblood foals. PLoS ONE 2023, 18, e0284105. [Google Scholar] [CrossRef] [PubMed]
- Leśniak, K.; Whittington, L.; Mapletoft, S.; Mitchell, J.; Hancox, K.; Draper, S.; Williams, J. The Influence of Body Mass and Height on Equine Hoof Conformation and Symmetry. J. Equine Vet. Sci. 2019, 77, 43–49. [Google Scholar] [CrossRef]
- Kallerud, A.S.; Fjordbakk, C.T.; Hendrickson, E.H.S.; Persson-Sjodin, E.; Hammarberg, M.; Rhodin, M.; Hernlund, E. Objectively measured movement asymmetry in yearling Standardbred trotters. Equine Vet. J. 2021, 53, 590–599. [Google Scholar] [CrossRef] [PubMed]
- Keegan, K.G.; Kramer, J.; Yonezawa, Y.; Maki, H.; Pai, P.F.; Dent, E.V.; Kellerman, T.E.; Wilson, D.A.; Reed, S.K. Assessment of repeatability of a wireless, inertial sensor-based lameness evaluation system for horses. Am. J. Vet. Res. 2011, 72, 1156–1163. [Google Scholar] [CrossRef]
- Timmerman, I.; Macaire, C.; Hanne-Poujade, S.; Bertoni, L.; Martin, P.; Marin, F.; Chateau, H. A Pilot Study on the Inter-Operator Reproducibility of a Wireless Sensors-Based System for Quantifying Gait Asymmetries in Horses. Sensors 2022, 22, 9533. [Google Scholar] [CrossRef]
- Pagliara, E.; Marenchino, M.; Antenucci, L.; Costantini, M.; Zoppi, G.; Giacobini, M.D.L.; Bullone, M.; Riccio, B.; Bertuglia, A. Fetlock Joint Angle Pattern and Range of Motion Quantification Using Two Synchronized Wearable Inertial Sensors per Limb in Sound Horses and Horses with Single Limb Naturally Occurring Lameness. Vet. Sci. 2022, 9, 456. [Google Scholar] [CrossRef]
- Roepstorff, L.; Wiestner, T.; Weishaupt, M.A.; Egenvall, E. Comparison of microgyro-based measurements of equine metatarsal/metacarpal bone to a high speed video locomotion analysis system during treadmill locomotion. Vet. J. 2013, 198, e157–e160. [Google Scholar] [CrossRef]
- Donnell, J.R.; Frisbie, D.D.; King, M.R.; Goodrich, L.R.; Haussler, K.K. Comparison of subjective lameness evaluation, force platforms and an inertial-sensor system to identify mild lameness in an equine osteoarthritis model. Vet. J. 2015, 206, 136–142. [Google Scholar] [CrossRef]
- McCracken, M.J.; Kramer, J.; Keegan, K.G.; Lopes, M.; Wilson, D.A.; Reed, S.K.; LaCarrubba, A.; Rasch, M. Comparison of an inertial sensor system of lameness quantification with subjective lameness evaluation. Equine Vet. J. 2012, 44, 652–656. [Google Scholar] [CrossRef] [PubMed]
- Lopes, M.A.F.; Eleuterio, A.; Mira, M.C. Objective Detection and Quantification of Irregular Gait with a Portable Inertial Sensor-Based System in Horses During an Endurance Race—A Preliminary Assessment. J. Equine Vet. Sci. 2018, 70, 123–129. [Google Scholar] [CrossRef]
- Peham, C.; Licka, T.; Mayr, A.; Scheidl, M. Individual Speed Dependency of Forelimb Lameness in Trotting Horses. Vet. J. 2000, 160, 135–138. [Google Scholar] [CrossRef]
- Starke, S.D.; Raistrick, K.J.; May, S.A.; Pfau, T. The effect of trotting speed on the evaluation of subtle lameness in horses. Vet. J. 2013, 197, 245–252. [Google Scholar] [CrossRef]
- Robert, C.; Valette, J.P.; Pourcelot, P.; AudigiÉ, F.; Denoix, J.M. Effects of trotting speed on muscle activity and kinematics in saddlehorses. Equine Vet. J. 2002, 34, 295–301. [Google Scholar] [CrossRef]
- Moorman, V.J.; Frisbie, D.D.; Kawcak, C.E.; McIlwraith, C.W. The Effect of Horse Velocity on the Output of an Inertial Sensor System. J. Equine Vet. Sci. 2017, 58, 34–39. [Google Scholar] [CrossRef]
- Darbandi, H.; Serra Bragança, F.; van der Zwaag, B.J.; Voskamp, J.; Gmel, A.I.; Haraldsdóttir, E.H.; Havinga, P. Using Different Combinations of Body-Mounted IMU Sensors to Estimate Speed of Horses—A Machine Learning Approach. Sensors 2021, 21, 798. [Google Scholar] [CrossRef]
- Lopes, M.A.; Dearo, A.C.; Lee, A.; Reed, S.K.; Kramer, J.; Pai, P.F.; Yonezawa, Y.; Maki, H.; Morgan, T.L.; Wilson, D.A.; et al. An attempt to detect lameness in galloping horses by use of body-mounted inertial sensors. Am. J. Vet. Res. 2016, 77, 1121–1131. [Google Scholar] [CrossRef]
- Becker, K.; Lewczuk, D. Phenotypic correlations between jump and gaits characteristics measured by inertial measurement units in horse jumping training—Preliminary results. Livest. Sci. 2022, 266, 105112. [Google Scholar] [CrossRef]
- Becker, K.; Lewczuk, D. Variability of Jump Biomechanics Between Horses of Different Age and Experience Using Commercial Inertial Measurement Unit Technology. J. Equine Vet. Sci. 2022, 119, 104146. [Google Scholar] [CrossRef]
- Schmutz, A.; Chèze, L.; Jacques, J.; Martin, P. A Method to Estimate Horse Speed per Stride from One IMU with a Machine Learning Method. Sensors 2020, 20, 518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricard, A.; Dumont Saint Priest, B.; Danvy, S.; Barrey, E. Accelerometers Provide Early Genetic Selection Criteria for Jumping Horses. Front. Genet. 2020, 11, 448. [Google Scholar] [CrossRef]
- Münz, A.; Eckardt, F.; Witte, K. Horse–rider interaction in dressage riding. Hum. Mov. Sci. 2014, 33, 227–237. [Google Scholar] [CrossRef]
- MacKechnie-Guire, R.; Pfau, T. Differential rotational movement and symmetry values of the thoracolumbosacral region in high-level dressage horses when trotting. PLoS ONE 2021, 16, e0251144. [Google Scholar] [CrossRef]
- Martin, P.; Cheze, L.; Pourcelot, P.; Desquilbet, L.; Duray, L.; Chateau, H. Effects of the rider on the kinematics of the equine spine under the saddle during the trot using inertial measurement units: Methodological study and preliminary results. Vet. J. 2017, 221, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Pasquiet, B.; Biau, S.; Trébot, Q.; Debril, J.-F.; Durand, F.; Fradet, L. Detection of Horse Locomotion Modifications Due to Training with Inertial Measurement Units: A Proof-of-Concept. Sensors 2022, 22, 4981. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.N.; Lee, M.W.; Byeon, Y.H.; Lee, W.S.; Kwak, K.C. Classification of Horse Gaits Using FCM-Based Neuro-Fuzzy Classifier from the Transformed Data Information of Inertial Sensor. Sensors 2016, 16, 664. [Google Scholar] [CrossRef] [Green Version]
- Buchner, H.H.F.; KüBber, P.; Zohmann, E.; Peham, C.H. Sedation and antisedation as tools in equine lameness examination. Equine Vet. J. 1999, 31, 227–230. [Google Scholar] [CrossRef] [PubMed]
- da Silva Azevedo, M.; De La Côrte, F.D.; Brass, K.E.; Gallio, M.; Pozzobon, R.; Lopes, M.A.F.; Lopes, L.F.D. The Use of Xylazine or Acepromazine Does Not Interfere in the Lameness Evaluation by Inertial Sensors. J. Equine Vet. Sci. 2015, 35, 27–30. [Google Scholar] [CrossRef]
- Leelamankong, P.; Estrada, R.J.; Rungsri, P.; Wolfgang, S.; Müller, C.D.V.S.; Lischer, C.J. Objective Evaluation of the Response to Perineural Analgesia of the Deep Branch of the Lateral Plantar Nerve and Intraarticular Analgesia of the Tarsometatarsal Joint in Horses with Suspected Proximal Metatarsal Pain Using Body-Mounted Inertial Sensors. J. Equine Vet. Sci. 2018, 70, 91–95. [Google Scholar] [CrossRef]
- Rungsri, P.K.; Staecker, W.; Leelamankong, P.; Estrada, R.J.; Schulze, T.; Lischer, C.J. Use of Body-Mounted Inertial Sensors to Objectively Evaluate the Response to Perineural Analgesia of the Distal Limb and Intra-articular Analgesia of the Distal Interphalangeal Joint in Horses with Forelimb Lameness. J. Equine Vet. Sci. 2014, 34, 972–977. [Google Scholar] [CrossRef]
- Rettig, M.J.; Leelamankong, P.; Rungsri, P.; Lischer, C.J. Effect of sedation on fore- and hindlimb lameness evaluation using body-mounted inertial sensors. Equine Vet. J. 2016, 48, 603–607. [Google Scholar] [CrossRef]
- López-Sanromán, F.J.; Gómez Cisneros, D.; Varela del Arco, M.; Santiago Llorente, I.; Santos González, M. The use of low doses of acepromazine as an aid for lameness diagnosis in horses: An accelerometric evaluation. Vet. Comp. Orthop. Traumatol. 2015, 28, 312–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quam, V.; Yardley, J.; Quam, M.; Paz, C.; Belknap, J. Cryotherapy provides transient analgesia in an induced lameness model in horses. Can. Vet. J. 2021, 62, 834–838. [Google Scholar] [PubMed]
- van der Straaten, R.; Wesseling, M.; Jonkers, I.; Vanwanseele, B.; Bruijnes, A.; Malcorps, J.; Bellemans, J.; Truijen, J.; De Baets, L.; Timmermans, A. Functional movement assessment by means of inertial sensor technology to discriminate between movement behaviour of healthy controls and persons with knee osteoarthritis. J. Neuroeng. Rehabil. 2020, 17, 65. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Cen, X.; Chen, H.; Sun, D.; Munivrana, G.; Bálint, K.; Bíró, I.; Gu, Y. The influence of running shoe with different carbon-fiber plate designs on internal foot mechanics: A pilot computational analysis. J. Biomech. 2023, 153, 111597. [Google Scholar] [CrossRef] [PubMed]
- Guiotto, A.; Bortolami, G.; Ciniglio, A.; Spolaor, F.; Guarneri, G.; Avogaro, A.; Cibin, F.; Silvestri, F.; Sawacha, Z. Machine learning approach to diabetic foot risk classification with biomechanics data. Gait Posture 2022, 97, 30–31. [Google Scholar] [CrossRef]
- Van Houtte, J.; Vandenberghe, F.; Zheng, G.; Huysmans, T.; Sijbers, J. EquiSim: An Open-Source Articulatable Statistical Model of the Equine Distal Limb. Front. Vet. Sci. 2021, 8, 623318. [Google Scholar] [CrossRef]
- Collado-Mateo, D.; Lavín-Pérez, A.M.; Fuentes García, J.P.; García-Gordillo, M.; Villafaina, S. Effects of Equine-Assisted Therapies or Horse-Riding Simulators on Chronic Pain: A Systematic Review and Meta-Analysis. Medicina 2020, 56, 444. [Google Scholar] [CrossRef]
- Young, C.; Horton, J. CADTH Rapid Response Reports. In Canine and Equine Therapy for Mental Health: A Review of Clinical Effectiveness; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, Canada, 2019. [Google Scholar]
- Pérez-Gómez, J.; Amigo-Gamero, H.; Collado-Mateo, D.; Barrios-Fernandez, S.; Muñoz-Bermejo, L.; Garcia-Gordillo, M.; Carlos-Vivas, J.; Adsuar, J.C. Equine-assisted activities and therapies in children with attention-deficit/hyperactivity disorder: A systematic review. J. Psychiatr. Ment. Health Nurs. 2021, 28, 1079–1091. [Google Scholar] [CrossRef]
IMU | Number of Sensors | Sensor Position | Primary Measure | Source |
---|---|---|---|---|
Lameness Locator® | 3 | Pelvis, head, right front limb | Vertical movement of torso | https://equinosis.com/ (accessed on 3 July 2023). |
Equigait® | 3–8 * | Poll, withers, midline of the horse | Gait asymmetry, back movement, horse–rider interaction | https://equigait.co.uk/ (accessed on 3 July 2023). |
Equimoves® | 8 | Poll, withers, sacrum, sternum, forelimb, hind limb | Hoof-event detection, limb angles, upper-body symmentry | https://equimoves.nl/ (accessed on 3 July 2023). |
Xsens® | 6 | Poll, sacrum, limb | Gait asymmetry, limb movement | https://www.movella.com/products/xsens (accessed on 3 July 2023). |
Study | Horse (N) | IMU (Position) vs. Validation System | Gait/limb/IMU Position | Hoof-On/Foot-On | Hoof-Off/Foot-Off | Stance Duration | |||
---|---|---|---|---|---|---|---|---|---|
Accuracy (ms) | Precision (ms) | Accuracy (ms) | Precision (ms) | Accuracy (ms) | Precision (ms) | ||||
Braganca, 2017 [50] | Warmblood, sound (N = 10) | Promove-mini (4 sensors on each limb [metacarpal/metatarsal]) vs. FP | Walk, forelimb | 10.9 (M1) | 27.2 (M1) | 28.8 (M1) | 26.0 (M1) | 17.9 (M1) | 35.7 (M1) |
−71.0 (M2) | 31.1 (M2) | −45.2 (M2) | 51.5 (M2) | 25.8 (M2) | 51.2 (M2) | ||||
0.3 (M3) | 11.5 (M3) | 14.2 (M3) | 31.0 (M4) | 13.9 (M3) | 31.5 (M3) | ||||
−58.8 (M4) | 46.1 (M4) | −40.5 (M4) | 53.3 (M4) | 18.3 (M4) | 60.3 (M4) | ||||
Walk, hind limb | 14.1 (M1) | 8.1 (M1) | −42.7 (M1) | 12.9 (M1) | −56.8 (M1) | 12.5 (M1) | |||
−18.3 (M2) | 13.5 (M2) | −15.1 (M2) | 21.2 (M2) | 3.2 (M2) | 23.6 (M2) | ||||
2.0 (M3) | 11.5 (M3) | −5.4 (M3) | 14.3 (M3) | −7.4 (M3) | 17.8 (M3) | ||||
0.1 (M4 | 14.8 (M4) | −9.8 (M4) | 26.6 (M4) | −9.8 (M4) | 29.9 (M4) | ||||
Trot, forelimb | −3.8 (M1) | 23.9 (M1) | 28.8 (M1) | 17.5 (M1) | 32.6 (M1) | 28.1 (M1) | |||
−99.2 (M2) | 58.0 (M2) | −26.8 (M2) | 19.2 (M2) | 72.4 (M2) | 55.7 (M2) | ||||
7.9 (M3) | 6.7 (M3) | −3.7 (M3) | 35.4 (M3) | −11.6 (M3) | 34.6 (M3) | ||||
−82.6 (M4) | 61.8 (M4) | −19.7 (M4) | 7.5 (M4) | 62.9 (M4) | 64.0 (M4) | ||||
Trot, hind limb | 16.3 (M1) | 10.1 (M1) | 17.6 (M1) | 29.1 (M1) | 1.3 (M1) | 34.4 (M1) | |||
−10.8 (M2) | 12.5 (M2) | −17.9 (M2) | 46.7 (M2) | −7.1 (M2) | 50.1 (M2) | ||||
11.3 (M3) | 9.1 (M3) | −2.3 (M3) | 46.9 (M3) | −13.6 (M3) | 48.9 (M3) | ||||
11.3 (M3) | 9.1 (M4) | −19.9 (M4) | 32.7 (M4) | −31.2 (M4) | 31.6 (M4) | ||||
Tijssen, 2020 [51] | Warmblood, sound (N = 7) | Promove-mini (2 sensors on right forelimb, right hind limb) vs. FP | Walk, forelimb | 17.93 (Acc) | - | 3.20 (Acc) 0.75 (AV) | - | −2.67 (Acc) | 3.76 (Acc) |
11.06 (AV) | - | −1.33 (AV) | 3.20 (AV) | ||||||
Walk, hind limb | 23.96 (Acc) | - | −4.18 (Acc) | 3.52 (Acc) | |||||
3.55 (AV) | - | −2.88 (AV) | 2.86 (AV) | ||||||
Trot, forelimb | 13.77 (Acc) | - | −1.64 (Acc) | 3.84 (Acc) | |||||
2.39 (AV) | - | 0.74 (AV) | 4.98 (AV) | ||||||
Trot, hind limb | 14.84 (Acc) | - | −2.39 (Acc) | 6.18 (Acc) | |||||
12.22 (AV) | - | −1.66 (AV) | 4.52 (AV) | ||||||
Hatrisse, 2022 a [46] | Sound horses (N = 7) | Promove-mini (7 sensors on withers, cannon bone, hooves) vs. Tijssen method | Trot, forelimb, straight line | 0.40 (HG) | 1.87 (HG) | 1.40 (HG) | 1.68 (HG) | 1.02 (HG) | 2.44 (HG) |
1.79 (SG) | 1.65 (SG) | 1.46 (SG) | 1.80 (SG) | −0.34 (SG) | 1.82 (SG) | ||||
Trot, forelimb, left circle | 0.96 (HG) | 1.72 (HG) | −0.19 (HG) | 1.68 (HG) | −1.16 (HG) | 2.36 (HG) | |||
0.15 (SG) | 3.74 (SG) | 0.16 (SG) | 1.77 (SG) | −0.28 (SG) | 2.11 (SG) | ||||
Trot, forelimb, right circle | 1.12 (HG) | 2.02 (HG) | 0.08 (HG) | 2.81 (HG) | −1.04 (HG) | 3.37 (HG) | |||
1.14 (SG) | 2.43 (SG) | 0.38 (SG) | 2.33 (SG) | −0.76 (SG) | 3.17 (SG) | ||||
Trot, hind limb, straight line | 0.59 (HG) | 1.40 (HG) | −0.25 (HG) | 1.65 (HG) | −0.84 (HG) | 1.69 (HG) | |||
0.88 (SG) | 1.36 (SG) | −0.20 (SG) | 1.34 (SG) | −1.09 (SG) | 1.05 (SG) | ||||
Trot, hind limb, left circle | 0.75 (HG) | 0.72 (HG) | −0.95 (HG) | 1.69 (HG) | −1.71 (HG) | 1.85 (HG) | |||
−0.56 (SG) | 0.50 (SG) | −1.94 (SG) | 1.17 (SG) | −1.38 (SG) | 1.25 (SG) | ||||
Trot, hind limb, right circle | 3.45 (HG) | 1.09 (HG) | 0.24 (HG) | 3.54 (HG) | −3.22 (HG) | 3.63 (HG) | |||
−0.12 (SG) | 0.73 (SG) | −0.74 (SG) | 2.13 (SG) | −0.62 (SG) | 2.38 (SG) | ||||
Briggs, 2021 b [52] | Sound horses (N = 11) | Shimmer3 (6 sensors on hooves, pastern, cannon bone) vs. Tijssen method | Walk, forelimb, pastern | −5 (M1) | 11 (M1) | 3 (M1) | 16 (M1) | 0.92 (asphalt) 0.52 (grass) 1.19 (sand) | 2.98 (asphalt) 2.14 (grass) 5.29 (sand) |
−4 (M2) | 14 (M2) | −7 (M2) | 27 (M2) | ||||||
Walk, forelimb, cannon | −5 (M1) | 21 (M1) | 1 (M1) | 19 (M1) | |||||
−30 (M3) | 40 (M3) | −15 (M3) | 65 (M3) | ||||||
14 (M4) | 72 (M4) | −35 (M4) | 117 (M4) | ||||||
Walk, hind limb, pastern | 2 (M1) | 10 (M1) | 6 (M1) | 14 (M1) | 0.10 (asphalt) −0.33 (grass) 0.22 (sand | 3.42 (asphalt) 7.42 (grass) 3.60 (sand) | |||
−1 (M2) | 10 (M2) | −3 (M2) | 38 (M2) | ||||||
Walk, hind limb, cannon | −5 (M1) | 11 (M1) | −1 (M1) | 15 (M1) | |||||
−31 (M3) | 55 (M3) | −57 (M3) | 69 (M3) | ||||||
161 (M4) | 412 (M4) | −15 (M4) | 180 (M4) | ||||||
Trot, forelimb, pastern | −4 (M1) | 10 (M1) | −18 (M1) | 23 (M1) | 1.09 (asphalt) −0.57 (grass) −1.09 (sand | 8.68 (asphalt) 6.67 (grass) 7.68 (sand) | |||
−2 (M2) | 9 (M2) | 4 (M2) | 34 (M2) | ||||||
Trot, forelimb, cannon | −9 (M1) | 23 (M1) | −15 (M1) | 33 (M1) | |||||
−26 (M3) | 21 (M3) | 62 (M3) | 114 (M3) | ||||||
43 (M4) | 67 (M4) | 77 (M4) | 102 (M4) | ||||||
Trot, hind limb, pastern | 1 (M1) | 12 (M1) | 2 (M1) | 9 (M1) | 0.50 (asphalt) 0.92 (grass) 1.16 (sand | 2.38 (asphalt) 2.26 (grass) 4.28 (sand) | |||
−1 (M2) | 19 (M2) | 15 (M2) | 21 (M2) | ||||||
Trot, hind limb, pastern | −3 (M1) | 16 (M1) | −7 (M1) | 14 (M1) | |||||
−4 (M3) | 27 (M3) | −144 (M3) | 62 (M3) | ||||||
98 (M4) | 147 (M4) | −72 (M4) | 100 (M4) |
Study | Horse (N) | IMU (Position) vs. Validation System | Parameters | RMSE ± SD (°) | PCC ± SD (°) | ICC | ROM |
---|---|---|---|---|---|---|---|
Pagliara, 2022 [69] | Sound and lame horses (N = 14) | MOVIT system (8 sensors on dorsal metacarpus/metatarsus and pastern) vs. OMC | Walk, sound horses | 7.77 ± 3.42 | 0.96 ± 0.03 | ||
Walk, lame horses | 8.68 ± 4.03 | 0.95 ± 0.04 | |||||
Trot, sound horses | 8.06 ± 2.99 | 0.97 ± 0.02 | |||||
Trot, lame horses | 10.06 ± 4.39 | 0.96 ± 0.03 | |||||
Bosch, 2018 [28] | Warmblood, sound (N = 7) | EquiMoves (8 sensors on poll, withers, sacrum, sternum, and limbs) vs. OMC | Walk, sagittal plane | 0.67 (forelimb) | - | 0.99 (retraction) | 0.99 |
0.67 (hind limb) | - | 0.98 (protraction) | |||||
Walk, coronal plane | 1.27 (forelimb) | - | 0.92 (adduction) | 0.92 | |||
1.01 (hind limb) | - | 0.92 (abduction) | |||||
Trot, sagittal plane | 1.05 (forelimb) | - | 0.97 (retraction) | 0.98 | |||
0.95 (hind limb) | - | 0.97 (protraction) | |||||
Trot, coronal plane | 1.79 (forelimb) | - | 0.90 (adduction) | 0.94 | |||
1.21 (hind limb) | - | 0.94 (abduction) | |||||
Keegan, 2011 [67] | Sound and lame horses (N = 236) | IMU (3 sensors on head, pelvis, pastern), two consecutive measurements | HMA (%) | 16.8 a | 0.885 | ||
HDmin (mm) | 3.15 a | 0.936 | |||||
HDmax (mm) | 3.17 a | 0.900 | |||||
PMA (%) | 14.1 a | 0.952 | |||||
PDmin (mm) | 1.36 a | 0.935 | |||||
PDmax (mm) | 1.69 a | 0.925 | |||||
Marshall, 2012 [32] | Sound horses (N = 17) | Lameness Locator (3 sensors on head, pelvis, right forelimb), two consecutive measurements | PMA (left hind limb) | 0.98 | |||
PMA (right hind limb) | 0.94 | ||||||
PDmin (mm) | 0.98 | ||||||
PDmax (mm) | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crecan, C.M.; Peștean, C.P. Inertial Sensor Technologies—Their Role in Equine Gait Analysis, a Review. Sensors 2023, 23, 6301. https://doi.org/10.3390/s23146301
Crecan CM, Peștean CP. Inertial Sensor Technologies—Their Role in Equine Gait Analysis, a Review. Sensors. 2023; 23(14):6301. https://doi.org/10.3390/s23146301
Chicago/Turabian StyleCrecan, Cristian Mihăiță, and Cosmin Petru Peștean. 2023. "Inertial Sensor Technologies—Their Role in Equine Gait Analysis, a Review" Sensors 23, no. 14: 6301. https://doi.org/10.3390/s23146301
APA StyleCrecan, C. M., & Peștean, C. P. (2023). Inertial Sensor Technologies—Their Role in Equine Gait Analysis, a Review. Sensors, 23(14), 6301. https://doi.org/10.3390/s23146301