Multichannel Classifier for Recognizing Acoustic Impacts Recorded with a phi-OTDR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Input Data
2.2. Feature Extraction Algorithms
2.2.1. Denoising and Artifact Removal
2.2.2. Highlighting Periodic Signal Structures
2.3. Multichannel Neural Network Classifier
3. Experimental Study and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pnev, A.B.; Zhirnov, A.A.; Stepanov, K.V.; Nesterov, E.T.; Shelestov, D.A.; Karasik, V.E. Mathematical analysis of marine pipeline leakage monitoring system based on coherent OTDR with improved sensor length and sampling frequency. J. Phys. Conf. Ser. 2015, 584, 012016. [Google Scholar] [CrossRef]
- Svelto, C.; Pniov, A.; Zhirnov, A.; Nesterov, E.; Stepanov, K.; Karassik, V.; Laporta, P. Online monitoring of gas & oil pipeline by distributed optical fiber sensors. In Proceedings of the Offshore Mediterranean Conference and Exhibition, Ravenna, Italy, 27–29 March 2019; OnePetro: Richardson, TX, USA, 2019. [Google Scholar]
- Merlo, S.; Malcovati, P.; Norgia, M.; Pesatori, A.; Svelto, C.; Pniov, A.; Zhirnov, A.; Nesterov, E.; Karassik, V. Runways ground monitoring system by phase-sensitive optical-fiber OTDR. In Proceedings of the 2017 IEEE International Workshop on Metrology for Aero-Space (Metro-AeroSpace), Padua, Italy, 21–23 June 2017; pp. 523–529. [Google Scholar]
- Marie, T.F.B.; Bin, Y.; Dezhi, H.; Bowen, A. Principle and Application State of Fully Distributed Fiber Optic Vibration Detection Technology Based on Φ-OTDR: A Review. IEEE Sens. J. 2021, 21, 16428–16442. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, B.; Ye, Q.; Cai, H. Recent progress in distributed fiber acoustic sensing with Φ-OTDR. Sensors 2020, 20, 6594. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Li, X.; Peng, Z.; Rao, Y. A novel intrusion signal processing method for phase-sensitive optical time-domain reflectometry (Φ-OTDR). In Proceedings of the 23RD International Conference on Optical Fibre Sensors, Santander, Spain, 2–6 June 2014; SPIE: Bellingham, WA, USA, 2014; Volume 9157, pp. 805–808. [Google Scholar]
- Fouda, B.M.T.; Han, D.; An, B.; Chen, X. Research and software design of an Φ-OTDR-based optical fiber vibration recognition algorithm. J. Electr. Comput. Eng. 2020, 2020, 5720695. [Google Scholar]
- Zhu, T.; Xiao, X.; He, Q.; Diao, D. Enhancement of SNR and Spatial Resolution in φ-OTDR System by Using Two-Dimensional Edge Detection Method. J. Light. Technol. 2013, 31, 2851–2856. [Google Scholar] [CrossRef]
- Shi, Y.; Dai, S.; Jiang, T.; Fan, Z. A Recognition Method for Multi-Radial-Distance Event of Φ-OTDR System Based on CNN. IEEE Access 2021, 9, 143473–143480. [Google Scholar] [CrossRef]
- Wen, H.; Peng, Z.; Jian, J.; Wang, M.; Liu, H.; Mao, Z.-H.; Ohodnicki, P.; Chen, K.P. Artificial intelligent pattern recognition for optical fiber distributed acoustic sensing systems based on phase-OTDR. In Proceedings of the Asia Communications and Photonics Conference, Hangzhou, China, 26–29 October 2018; Optica Publishing Group: Washington, DC, USA, 2018; p. Su4B-1. [Google Scholar]
- Li, S.; Peng, R.; Liu, Z. A surveillance system for urban buried pipeline subject to third-party threats based on fiber optic sensing and convolutional neural network. Struct. Health Monit. 2021, 20, 1704–1715. [Google Scholar] [CrossRef]
- Kandamali, D.F.; Cao, X.; Tian, M.; Jin, Z.; Dong, H.; Yu, K. Machine learning methods for identification and classification of events in ϕ-OTDR systems: A review. Appl. Opt. 2022, 61, 2975–2997. [Google Scholar] [CrossRef]
- Zhirnov, A.A.; Chesnokov, G.Y.; Stepanov, K.V.; Gritsenko, T.V.; Khan, R.I.; Koshelev, K.I.; Chernutsky, A.O.; Svelto, C.; Pnev, A.B.; Valba, O.V. Fiber-Optic Telecommunication Network Wells Monitoring by Phase-Sensitive Optical Time-Domain Reflectometer with Disturbance Recognition. Sensors 2023, 23, 4978. [Google Scholar] [CrossRef]
- Salem, H.; Negm, K.R.; Shams, M.Y.; Elzeki, O.M. Recognition of ocular disease based optimized VGG-net models. In Medical Informatics and Bioimaging Using Artificial Intelligence: Challenges, Issues, Innovations and Recent Developments; Springer International Publishing: Cham, Switzerland, 2021; pp. 93–111. [Google Scholar]
- Wang, Z.; Lou, S.; Wang, X.; Liang, S.; Sheng, X. Multi-branch long short-time memory convolution neural network for event identification in fiber-optic distributed disturbance sensor based on φ-OTDR. Infrared Phys. Technol. 2020, 109, 103414. [Google Scholar] [CrossRef]
- Chen, X.; Xu, C. Disturbance pattern recognition based on an ALSTM in a long-distance φ-OTDR sensing system. Microw. Opt. Technol. Lett. 2020, 62, 168–175. [Google Scholar] [CrossRef]
- Tian, M.; Dong, H.; Cao, X.; Yu, K. Temporal convolution network with a dual attention mechanism for φ-OTDR event classification. Appl. Opt. 2022, 61, 5951–5956. [Google Scholar] [CrossRef] [PubMed]
- Barantsov, I.A.; Pnev, A.B.; Koshelev, K.I.; Tynchenko, V.S.; Nelyub, V.A.; Borodulin, A.S. Classification of Acoustic Influences Registered with Phase-Sensitive OTDR Using Pattern Recognition Methods. Sensors 2023, 23, 582. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Yang, Y.; Zhang, H.; Sun, H.; Zhang, Z.; Xia, Z.; Zhu, J.; Dai, M.; Wen, H. Spectrum Analysis Enabled Periodic Feature Reconstruction Based Automatic Defect Detection System for Electroluminescence Images of Photovoltaic Modules. Micromachines 2022, 13, 332. [Google Scholar] [CrossRef] [PubMed]
- Sainath, T.N.; Weiss, R.J.; Wilson, K.W.; Li, B.; Narayanan, A.; Variani, E.; Bacchiani, M.; Senior, A.; Chin, K.; Misra, A.; et al. Multichannel signal processing with deep neural networks for automatic speech recognition. IEEE/ACM Trans. Audio Speech Lang. Process. 2017, 25, 965–979. [Google Scholar] [CrossRef]
- Juan, C.J. Distributed Fiber Optic Intrusion Sensor System for Monitoring Long Perimeters. Ph. D. Thesis, Texas A&M University, College Station, TX, USA, 2005; pp. 1–84. [Google Scholar]
- Tosoni, O.; Aksenov, S.B.; Podivilov, E.V.; Babin, S.A. Model of a fibreoptic phase-sensitive reflectometer and its comparison with the experiment. Quantum Electron. 2010, 40, 887. [Google Scholar] [CrossRef]
- Chollet, F. Deep Learning with Python; Simon and Schuster: New York, NY, USA, 2021. [Google Scholar]
- Abdelli, K.; Grießer, H.; Tropschug, C.; Pachnicke, S. Optical fiber fault detection and localization in a noisy OTDR trace based on denoising convolutional autoencoder and bidirectional long short-term memory. J. Light. Technol. 2021, 40, 2254–2264. [Google Scholar] [CrossRef]
- Datta, A.; Raj, V.; Sankar, V.; Kalyani, S.; Srinivasan, B. Measurement accuracy enhancement with multi-event detection using the deep learning approach in Raman distributed temperature sensors. Opt. Express 2021, 29, 26745–26764. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images; University of Toronto: Toronto, ON, Canada, 2009. [Google Scholar]
- Bieder, F.; Sandkühler, R.; Cattin, P.C. Comparison of methods generalizing max-and average-pooling. arXiv 2021, arXiv:2103.01746. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Stepanov, K.V.; Zhirnov, A.A.; Koshelev, K.I.; Chernutsky, A.O.; Khan, R.I.; Pnev, A.B. Sensitivity Improvement of Phi-OTDR by Fiber Cable Coils. Sensors 2021, 21, 7077. [Google Scholar] [CrossRef] [PubMed]
- Vrigazova, B. The proportion for splitting data into training and test set for the bootstrap in classification problems. Bus. Syst. Res. Int. J. Soc. Adv. Innov. Res. Econ. 2021, 12, 228–242. [Google Scholar] [CrossRef]
Classificator | Accuracy | Confusion Matrix | ||
---|---|---|---|---|
Actual Positive | Actual Negative | |||
Created algorithm (Figure 10) | 98.1% | Predicted positive | 98.3% | 1.7% |
Predicted negative | 2.07% | 97.93% | ||
DenseNet169 (Figure 16a) | 90.17% | Predicted positive | 99.04% | 0.96% |
Predicted negative | 18.7% | 81.3% | ||
EfficientNetB7 (Figure 16b) | 91.3% | Predicted positive | 98.53% | 1.47% |
Predicted negative | 12.58% | 87.42% | ||
InceptionV3 (Figure 16c) | 96.7% | Predicted positive | 95.12% | 4.88% |
Predicted negative | 1.71% | 98.29% | ||
Xception (Figure 16d) | 93.17% | Predicted positive | 98.84% | 1.12% |
Predicted negative | 12.5% | 87.5% | ||
ResNet50 (Figure 16e) | 83.96% | Predicted positive | 71.7% | 28.3% |
Predicted negative | 3.79% | 96.21% | ||
Previously developed architecture (Figure 17) | 96.07% | Predicted positive | 96.44% | 3.56% |
Predicted negative | 4.3% | 95.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barantsov, I.A.; Pnev, A.B.; Koshelev, K.I.; Garin, E.O.; Pozhar, N.O.; Khan, R.I. Multichannel Classifier for Recognizing Acoustic Impacts Recorded with a phi-OTDR. Sensors 2023, 23, 6402. https://doi.org/10.3390/s23146402
Barantsov IA, Pnev AB, Koshelev KI, Garin EO, Pozhar NO, Khan RI. Multichannel Classifier for Recognizing Acoustic Impacts Recorded with a phi-OTDR. Sensors. 2023; 23(14):6402. https://doi.org/10.3390/s23146402
Chicago/Turabian StyleBarantsov, Ivan Alekseevich, Alexey Borisovich Pnev, Kirill Igorevich Koshelev, Egor Olegovich Garin, Nickolai Olegovich Pozhar, and Roman Igorevich Khan. 2023. "Multichannel Classifier for Recognizing Acoustic Impacts Recorded with a phi-OTDR" Sensors 23, no. 14: 6402. https://doi.org/10.3390/s23146402
APA StyleBarantsov, I. A., Pnev, A. B., Koshelev, K. I., Garin, E. O., Pozhar, N. O., & Khan, R. I. (2023). Multichannel Classifier for Recognizing Acoustic Impacts Recorded with a phi-OTDR. Sensors, 23(14), 6402. https://doi.org/10.3390/s23146402