Conversion of Upper-Limb Inertial Measurement Unit Data to Joint Angles: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Database Search Strategy
2.2. Selection Criteria
- Inclusion criteria:
- Motion analysis experiments conducted on human subjects
- Studies evaluating joint angles in the upper limb, including those associated with one or more of the shoulder, elbow, and scapula segments
- Use of IMUs that operate with an accelerometer, gyroscope, magnetometer, or a combination
- Comparison of IMU-based joint angles with those derived from optoelectronic motion analysis.
- Exclusion criteria:
- Non-English studies
- Thesis, conference papers, or review articles
- Non-human studies
- Studies that employ sensors other than IMUs
2.3. Quality Assessment
- Is the aim or objective of the study clearly described?
- Are the main outcomes to be measured clearly defined in the Introduction or Methods section?
- Are the selection and characteristics of participants included in the study clearly described?
- Are the details of the experimental setup and measurement procedure clearly described?
- Are the movement tasks clearly described?
- Are the kinematics in all degrees of freedom about the joints evaluated?
- Are the methods of data processing or algorithms used clearly described?
- Are the findings or key results of the study clearly described?
- Are the validity and reliability of the experiment described?
- Are the experimental errors in the results of the studies discussed?
- Are the limitations and biases of the study discussed?
2.4. Data Extraction
3. Results
3.1. Search Outcome and Quality
3.2. Inertial Measurement Unit (IMU) Placement and Sensor-to-Segment Calibration
3.3. Inertial Measurement Unit (IMU) Data to Joint-Angle Conversion
3.4. Scapulothoracic Joint Motion Measurement
3.5. Humerothoracic Joint Motion Measurement
Study | Sample | Quality Score | Calibration | Sensor Fusion | Joint Angle Calculation | Task | Error Metric | Kinematic Errors | ||
---|---|---|---|---|---|---|---|---|---|---|
F/E (Plane) | AB/AD (Elevation) | IN/EX (Axial Rotation) | ||||||||
[30] | n = 1 | 16 | PSA, static | Xsens KF | EAD | Miscellaneous | RMSE | [0.2°, 3.2°] | [0.2°, 3.2°] | [0.2°, 3.2°] |
[107] | n = 5 | 19 | FJM | Xsens KF | EAD | Miscellaneous | Peak error | (20°) | (10°) | (20°) |
[66] | n = 1 | 19 | PSA | Xsens KF | EAD | Shoulder F/E | Peak error | 13.4° | / | / |
Shoulder horizontal AB/AD | / | 17.25° | / | |||||||
Shoulder internal rotation | / | / | 60.45° | |||||||
Water serving | Mean error | 13.82° | 7.44° | 28.88° | ||||||
[61] | n = 4 | 15 | Static | Unscented KF | Forward kinematics | Arbitrary movement | RMSE | 2.36° | 0.88° | 2.9° |
[67] | n = 8 | 16 | Static | Unscented KF | Forward kinematics | Shoulder F/E | RMSE | 5.5° | / | / |
Shoulder AB/AD | / | 4.4° | / | |||||||
[94] | n = 1 | 16 | PSA | Xsens KF | ABV | Shoulder F/E | Mean error ± SD | 0.76° ± 4.04° | / | / |
Shoulder AB/AD | / | 0.69° ± 10.47° | / | |||||||
Shoulder IN/EX | / | / | −0.65° ± 5.67° | |||||||
[95] | n = 1 | 18 | PSA | InvenSense PA, MFC | EAD | Reaching | RMSE | (4.9°) | (1.2°) | (2.9°) |
[36] | n = 10 | PSA, static, FJM | Xsens KF | EAD | Shoulder flexion | RMSE± SD | 8.0° ± 3.9° | 17.8° ± 3.8° | 17.5° ± 8° | |
21 | Shoulder abduction in scapular plane | 16.3° ± 4.6° | 22.4° ± 3.6° | 23.4° ± 6.2° | ||||||
Rotating wheel | 8.7° ± 2.0° | 9.2° ± 3.9° | 22.0° ± 10.3° | |||||||
[92] | n = 12 | 20 | FJM | KF | EAD | Miscellaneous | Proportional & Systematic error | 0.01X +0.46° | 0.21Y +1.3° | 0.20Z −0.29° |
[96] | n = 8 | 22 | PSA, static | Gradient decent | EAD | Front crawl | RMSE | 5° | 10° | 7° |
Breaststroke | / | 5° | 3° | |||||||
[102] | n = 10 | 19 | Static | PI control | EAD | Shoulder F/E | RMSE | 0.63° | 1.57° | 1.25° |
[60] | n = 6 | 21 | PSA | Accelerometer | Inclination | Milking | RMSE ± SD | / | (7.2° ± 2.9°) | / |
[68] | n = 6 | 19 | PSA, static | Xsens KF | EAD | Mimic surgery | RMSE | / | (6.8°) | / |
[103] | n = 13 | 19 | PSA | Extended KF | Inclination | Move dowels (slow) | RMSE | / | (1.1°± 0.6°) | / |
[69] | n = 14 | 16 | PSA, static | iSen PA | iSen PA | Shoulder F/E | RMSE | 14.6° | / | / |
Shoulder AB/AD | / | 10.9° | / | |||||||
[93] | n = 14 | 16 | IMU caliper | Xsens KF | EAD | Arm sagittal plane elevation | RMSE ± SD | / | (4.4° ± 4.1°) | / |
Arm scapular plane elevation | / | (2.5° ± 1.7°) | / | |||||||
Arm frontal plane elevation | / | (2.3° ± 2.5°) | / | |||||||
Shoulder IN/EX | / | / | (1.8° ± 1.4°) | |||||||
[104] | n = 13 | 20 | PSA | KF | Inclination | Move dowels (slow) | RMSE | / | (1.0°± 0.6°) | / |
[105] | n = 1 | 15 | Static | ESOQ-2 KF | EAD | Uniaxial arm rotation | RMSE | 1.10° | 1.42° | 1.96° |
[41] | n = 10 | 21 | Static, FJM, optimization | KF, TRIAD | EAD | Yoga sequence | RMSE | 3.4° | 7.5° | 3.9° |
[70] | n = 6 | 14 | Static | MFC, gradient decent | ABV | Rowing | % Mean error ± SD (r) | 2.19% ± 1.23% | / | / |
[109] | n = 1 | 15 | Static | Extended KF | ABV | Shoulder AB/AD | RMSE | / | 4.7° | / |
Shoulder F/E | 5.6° | / | / | |||||||
[100] | n = 11 | 20 | Static | Xsens KF | EAD | Item elevating (easy) | RMSE ± SD | / | (2.18° ± 0.85°) | / |
Item elevating (hard) | / | (2.06° ± 1.23°) | / | |||||||
[73] | / | 10 | Static | ADIS16448 PA | ABV | Rowing | Mean absolute error (r) | / | (3.76°) | / |
[91] | n = 10 | 18 | Static, FJM | Orthogonalization, drift compensation | EAD | Yoga sequence | Mean absolute error | 3° | 2° | 4° |
[84] | n = 1 | 21 | Static | MyoMotion KF | EAD | Nordic walking | Mean error | −8.2° | −31.7° | / |
[85] | n = 19 | 18 | Assume aligned | Rebee-Rehab PA | EAD | Flexion | RMSE | 7.62° | / | / |
Extension | 5.04° | / | / | |||||||
Abduction | / | 8.75° | / | |||||||
External rotation | / | / | 10.08° | |||||||
[72] | n = 10 | 17 | Static | Perception Neuron PA | / | Stationary walk | RMSE ± SD | 1.9° ± 0.8° | 7.14° ± 2.97° | / |
Distance walk | 1.12° ± 0.65° | 5.36° ± 3.16° | / | |||||||
Stationary jog | 1.94° ± 1.53° | 5.97° ± 3.8° | / | |||||||
Distance jog | 1.78° ± 1.16° | 5.7° ± 2.57° | / | |||||||
Stationary ball shot | 2.23° ± 1.97° | 11.85° ± 10.24° | / | |||||||
Moving ball shot | 1.99° ± 1.12° | 15.15° ± 9.32° | / | |||||||
[74] | n = 15 | 17 | Static | Notch PA | Notch PA | Shoulder AB/AD | Mean error ± SD | / | 24.48° ± 4.83° | / |
Shoulder F/E | 34.11° ± 3.83° | / | / | |||||||
Shoulder IN/EX | / | / | 44.95° ± 3.5° | |||||||
Hand-to-back pocket | 8.7° ± 1.58° | 3.05° ± 2.36° | 0.1° ± 3.11° | |||||||
Hand-to-contralateral shoulder | 3.49° ± 1.97° | 21.24° ± 4.14° | −1.53° ± 4.75° | |||||||
Hand-to-top-of-head | / | 21.88° ± 3.1° | 14.7° ± 14.13° | |||||||
[86] | n = 24 | 19 | PSA | WaveTrack PA | EAD | Abduction | RMSE | / | 12.2° | / |
Adduction | / | 12.8° | / | |||||||
Horizontal flexion | / | / | 13° | |||||||
Horizontal extension | / | / | 9.7° | |||||||
Vertical flexion | 14° | / | / | |||||||
Vertical extension | 17.9° | / | / | |||||||
External rotation | / | / | 10.7° | |||||||
Internal rotation | / | / | 10.4° | |||||||
[87] | n = 6 | 15 | PSA | SwiftMotion PA | SwiftMotion PA | Reaching | RMSE | 6.82°± 4.33° | / | / |
[81] | n = 5 | 19 | PSA, static | Mahony filter | Inverse kinematics | Fugl-Meyer task | RMSE ± SD | 6.9° ± 4.2° | 5.2° ± 0.8° | 7.9° ± 2.6° |
[106] | n = 10 | 19 | Static, FJM | UKF | EAD | Yoga sequence | RMSE | 3.2° ± 0.98° | 3.85° ± 2.35° | 6.90° ± 4.01° |
[88] | n = 7 | 20 | Static | Perception Neuron PA | EAD | Flexion | RMSE | 9.2° | / | / |
Extension | 3.4° | / | / | |||||||
Adduction | / | 7.6° | / | |||||||
Abduction | / | 11.4° | / | |||||||
Internal rotation | / | / | 7.4° | |||||||
External rotation | / | / | 8.1° | |||||||
Box lifting | 8.8° | 6.8° | 8.2° | |||||||
[89] | n = 1 | 12 | Regression modelling | gForcePro+ PA | ABV | Grasping | RMSE | 6.3° | 4.1° | 6.5° |
3.6. Glenohumeral Joint Motion Measurement
3.7. Elbow Joint Motion Measurement
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pollock, A.; Farmer, S.E.; Brady, M.C.; Langhorne, P.; Mead, G.E.; Mehrholz, J.; Van Wijck, F. Interventions for improving upper limb function after stroke. Cochrane Database Syst. Rev. 2014, 11, CD010820. [Google Scholar] [CrossRef]
- Kong, W.; Sessa, S.; Cosentino, S.; Zecca, M.; Saito, K.; Wang, C.; Imtiaz, U.; Lin, Z.; Bartolomeo, L.; Ishii, H.; et al. Development of a real-time IMU-based motion capture system for gait rehabilitation. In Proceedings of the 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), Shenzhen, China, 12–14 December 2013; pp. 2100–2105. [Google Scholar] [CrossRef]
- Leardini, A.; Lullini, G.; Giannini, S.; Berti, L.; Ortolani, M.; Caravaggi, P. Validation of the angular measurements of a new inertial-measurement-unit based rehabilitation system: Comparison with state-of-the-art gait analysis. J. Neuroeng. Rehabil. 2014, 11, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knippenberg, E.; Verbrugghe, J.; Lamers, I.; Palmaers, S.; Timmermans, A.; Spooren, A. Markerless motion capture systems as training device in neurological rehabilitation: A systematic review of their use, application, target population and efficacy. J. Neuroeng. Rehabil. 2017, 14, 61. [Google Scholar] [CrossRef] [PubMed]
- Tessendorf, B.; Gravenhorst, F.; Arnrich, B.; Troster, G. An IMU-based sensor network to continuously monitor rowing technique on the water. In Proceedings of the 2011 Seventh International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Melbourne, Australia, 6–9 December 2011; pp. 253–258. [Google Scholar] [CrossRef]
- Van der Kruk, E.; Reijne, M.M. Accuracy of human motion capture systems for sport applications; state-of-the-art review. Eur. J. Sport Sci. 2018, 18, 806–819. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.; Bideau, B.; Bideau, N.; Nicolas, G.; Delamarche, P.; Kulpa, R. Energy flow analysis during the tennis serve: Comparison between injured and noninjured tennis players. Am. J. Sports Med. 2014, 42, 2751–2760. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Li, H.; Li, A.R.; Zhang, H. Wearable IMU-based real-time motion warning system for construction workers’ musculoskeletal disorders prevention. Autom. Constr. 2017, 74, 2–11. [Google Scholar] [CrossRef]
- Yunus, M.N.H.; Jaafar, M.H.; Mohamed, A.S.A.; Azraai, N.Z.; Hossain, S. Implementation of Kinetic and Kinematic Variables in Ergonomic Risk Assessment Using Motion Capture Simulation: A Review. Int. J. Environ. Res. Public Health 2021, 18, 8342. [Google Scholar] [CrossRef]
- Bortolini, M.; Faccio, M.; Gamberi, M.; Pilati, F. Motion Analysis System (MAS) for production and ergonomics assessment in the manufacturing processes. Comput. Ind. Eng. 2018, 139, 105485. [Google Scholar] [CrossRef]
- Gopura, R.; Bandara, D.; Kiguchi, K.; Mann, G. Developments in hardware systems of active upper-limb exoskeleton robots: A review. Robot. Auton. Syst. 2016, 75, 203–220. [Google Scholar] [CrossRef]
- Gull, M.A.; Bai, S.; Bak, T. A Review on Design of Upper Limb Exoskeletons. Robotics 2020, 9, 16. [Google Scholar] [CrossRef] [Green Version]
- Theurel, J.; Desbrosses, K.; Roux, T.; Savescu, A. Physiological consequences of using an upper limb exoskeleton during manual handling tasks. Appl. Ergon. 2018, 67, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Kiguchi, K.; Rahman, M.H.; Sasaki, M.; Teramoto, K. Development of a 3DOF mobile exoskeleton robot for human upper-limb motion assist. Robot. Auton. Syst. 2008, 56, 678–691. [Google Scholar] [CrossRef]
- Wu, G.; Van der Helm, F.C.; Veeger, H.D.; Makhsous, M.; Van Roy, P.; Anglin, C.; Buchholz, B. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: Shoulder, elbow, wrist and hand. J. Biomech. 2005, 38, 981–992. [Google Scholar] [CrossRef]
- Panagiotopoulos, A.C.; Crowther, I.M. Scapular Dyskinesia, the forgotten culprit of shoulder pain and how to rehabilitate. Sicot-J 2019, 5, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gates, D.H.; Walters, L.S.; Cowley, J.; Wilken, J.M.; Resnik, L. Range of Motion Requirements for Upper-Limb Activities of Daily Living. Am. J. Occup. Ther. 2015, 70, 7001350010p1–7001350010p10. [Google Scholar] [CrossRef] [Green Version]
- Kainz, H.; Modenese, L.; Lloyd, D.; Maine, S.; Walsh, H.; Carty, C. Joint kinematic calculation based on clinical direct kinematic versus inverse kinematic gait models. J. Biomech. 2016, 49, 1658–1669. [Google Scholar] [CrossRef]
- Topley, M.; Richards, J.G. A comparison of currently available optoelectronic motion capture systems. J. Biomech. 2020, 106, 109820. [Google Scholar] [CrossRef]
- Wu, W.; Lee, P.V.; Bryant, A.L.; Galea, M.; Ackland, D.C. Subject-specific musculoskeletal modeling in the evaluation of shoulder muscle and joint function. J. Biomech. 2016, 49, 3626–3634. [Google Scholar] [CrossRef]
- Valevicius, A.M.; Jun, P.Y.; Hebert, J.S.; Vette, A.H. Use of optical motion capture for the analysis of normative upper body kinematics during functional upper limb tasks: A systematic review. J. Electromyogr. Kinesiol. 2018, 40, 1–15. [Google Scholar] [CrossRef]
- Mehta, D.; Sotnychenko, O.; Mueller, F.; Xu, W.; Elgharib, M.; Fua, P.; Theobalt, C. XNect: Real-time multi-person 3D motion capture with a single RGB camera. Acm Trans. Graph. 2020, 39, 82. [Google Scholar] [CrossRef]
- Regazzoni, D.; de Vecchi, G.; Rizzi, C. RGB cams vs RGB-D sensors: Low cost motion capture technologies performances and limitations. J. Manuf. Syst. 2014, 33, 719–728. [Google Scholar] [CrossRef]
- Berger, K.; Ruhl, K.; Schroeder, Y.; Bruemmer, C.; Scholz, A.; Magnor, M.A. Markerless motion capture using multiple color-depth sensors. VMV 2011, 317–324. [Google Scholar] [CrossRef]
- Fujiyoshi, H.; Lipton, A. Real-time human motion analysis by image skeletonization. IEICE Trans. Inf. Syst. 2004, 87, 113–120. [Google Scholar]
- Seifert, A.-K.; Grimmer, M.; Zoubir, A.M. Doppler Radar for the Extraction of Biomechanical Parameters in Gait Analysis. IEEE J. Biomed. Health Inform. 2020, 25, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Gurbuz, S.Z.; Amin, M.G. Radar-Based Human-Motion Recognition with Deep Learning: Promising Applications for Indoor Monitoring. IEEE Signal Process. Mag. 2019, 36, 16–28. [Google Scholar] [CrossRef]
- Cagnie, B.; Cools, A.; De Loose, V.; Cambier, D.; Danneels, L. Reliability and Normative Database of the Zebris Cervical Range-of-Motion System in Healthy Controls with Preliminary Validation in a Group of Patients with Neck Pain. J. Manip. Physiol. Ther. 2007, 30, 450–455. [Google Scholar] [CrossRef]
- EMalmström, E.-M.; Karlberg, M.; Melander, A.; Magnusson, M. Zebris versus Myrin: A comparative study between a three-dimensional ultrasound movement analysis and an inclinometer/compass method: Intradevice reliability, concurrent validity, intertester comparison, intratester reliability, and intraindividual variability. Spine 2003, 28, E433–E440. [Google Scholar]
- Cutti, A.G.; Giovanardi, A.; Rocchi, L.; Davalli, A.; Sacchetti, R. Ambulatory measurement of shoulder and elbow kinematics through inertial and magnetic sensors. Med. Biol. Eng. Comput. 2008, 46, 169–178. [Google Scholar] [CrossRef]
- Walmsley, C.P.; Williams, S.A.; Grisbrook, T.; Elliott, C.; Imms, C.; Campbell, A. Measurement of Upper Limb Range of Motion Using Wearable Sensors: A Systematic Review. Sports Med. Open 2018, 4, 53. [Google Scholar] [CrossRef] [Green Version]
- Mueller, F.; Mehta, D.; Sotnychenko, O.; Sridhar, S.; Casas, D.; Theobalt, C. Real-time hand tracking under occlusion from an egocentric rgb-d sensor. In Proceedings of the IEEE International Conference on Computer Vision, Venice, France, 22–29 October 2017; pp. 1154–1163. [Google Scholar]
- Strimpakos, N.; Sakellari, V.; Gioftsos, G.; Papathanasiou, M.; Brountzos, E.; Kelekis, D.; Kapreli, E.; Oldham, J. Cervical Spine ROM Measurements: Optimizing the Testing Protocol by Using a 3D Ultrasound-Based Motion Analysis System. Cephalalgia 2005, 25, 1133–1145. [Google Scholar] [CrossRef]
- Filippeschi, A.; Schmitz, N.; Miezal, M.; Bleser, G.; Ruffaldi, E.; Stricker, D. Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion. Sensors 2017, 17, 1257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iosa, M.; Picerno, P.; Paolucci, S.; Morone, G. Wearable Inertial Sensors for Human Movement Analysis. Expert Rev. Med. Devices 2016, 13, 641–659. [Google Scholar] [CrossRef] [PubMed]
- Bouvier, B.; Duprey, S.; Claudon, L.; Dumas, R.; Savescu, A. Upper Limb Kinematics Using Inertial and Magnetic Sensors: Comparison of Sensor-to-Segment Calibrations. Sensors 2015, 15, 18813–18833. Available online: https://mdpi-res.com/d_attachment/sensors/sensors-15-18813/article_deploy/sensors-15-18813.pdf (accessed on 1 October 2022). [CrossRef] [PubMed]
- O’Donovan, K.J.; Kamnik, R.; O’Keeffe, D.T.; Lyons, G.M. An inertial and magnetic sensor based technique for joint angle measurement. J. Biomech. 2007, 40, 2604–2611. [Google Scholar] [CrossRef]
- Luinge, H.; Veltink, P. Inclination measurement of human movement using a 3-D accelerometer with autocalibration. IEEE Trans. Neural Syst. Rehabil. Eng. 2004, 12, 112–121. [Google Scholar] [CrossRef]
- Kok, M.; Schon, T.B. Magnetometer Calibration Using Inertial Sensors. IEEE Sens. J. 2016, 16, 5679–5689. [Google Scholar] [CrossRef] [Green Version]
- de Vries, W.; Veeger, H.; Baten, C.; van der Helm, F. Magnetic distortion in motion labs, implications for validating inertial magnetic sensors. Gait Posture 2009, 29, 535–541. [Google Scholar] [CrossRef]
- Ligorio, G.; Bergamini, E.; Truppa, L.; Guaitolini, M.; Raggi, M.; Mannini, A.; Sabatini, A.M.; Vannozzi, G.; Garofalo, P. A Wearable Magnetometer-Free Motion Capture System: Innovative Solutions for Real-World Applications. IEEE Sens. J. 2020, 20, 8844–8857. [Google Scholar] [CrossRef]
- Valenti, R.G.; Dryanovski, I.; Xiao, J. A Linear Kalman Filter for MARG Orientation Estimation Using the Algebraic Quaternion Algorithm. IEEE Trans. Instrum. Meas. 2015, 65, 467–481. [Google Scholar] [CrossRef]
- Li, W.; Wang, J. Effective Adaptive Kalman Filter for MEMS-IMU/Magnetometers Integrated Attitude and Heading Reference Systems. J. Navig. 2012, 66, 99–113. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Gu, J.; Milios, E.; Huynh, P. Navigation with IMU/GPS/digital compass with unscented Kalman filter. In Proceedings of the IEEE International Conference Mechatronics and Automation, Niagara Falls, ON, Canada, 29 July 2005–1 August 2006; Volume 3, pp. 1497–1502. [Google Scholar] [CrossRef]
- Valenti, R.G.; Dryanovski, I.; Xiao, J. Keeping a Good Attitude: A Quaternion-Based Orientation Filter for IMUs and MARGs. Sensors 2015, 15, 19302–19330. Available online: https://mdpi-res.com/d_attachment/sensors/sensors-15-19302/article_deploy/sensors-15-19302.pdf (accessed on 14 January 2022). [CrossRef] [PubMed] [Green Version]
- Yi, C.; Ma, J.; Guo, H.; Han, J.; Gao, H.; Jiang, F.; Yang, C. Estimating Three-Dimensional Body Orientation Based on an Improved Complementary Filter for Human Motion Tracking. Sensors 2018, 18, 3765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahony, R.; Hamel, T.; Morin, P.; Malis, E. Nonlinear complementary filters on the special linear group. Int. J. Control 2012, 85, 1557–1573. [Google Scholar] [CrossRef] [Green Version]
- Madgwick, S.O.H.; Harrison, A.J.L.; Vaidyanathan, R. Estimation of IMU and MARG orientation using a gradient descent algorithm. In Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011; pp. 1–7. [Google Scholar] [CrossRef]
- JLi, J.; Gao, W.; Zhang, Y.; Wang, Z. Gradient Descent Optimization-Based Self-Alignment Method for Stationary SINS. IEEE Trans. Instrum. Meas. 2018, 68, 3278–3286. [Google Scholar] [CrossRef]
- Wilson, S.; Eberle, H.; Hayashi, Y.; Madgwick, S.O.; McGregor, A.; Jing, X.; Vaidyanathan, R. Formulation of a new gradient descent MARG orientation algorithm: Case study on robot teleoperation. Mech. Syst. Signal Process 2019, 130, 183–200. [Google Scholar] [CrossRef]
- Longo, U.G.; De Salvatore, S.; Sassi, M.; Carnevale, A.; De Luca, G.; Denaro, V. Motion Tracking Algorithms Based on Wearable Inertial Sensor: A Focus on Shoulder. Electronics 2022, 11, 1741. [Google Scholar] [CrossRef]
- Laidig, D.; Weygers, I.; Seel, T. Self-Calibrating Magnetometer-Free Inertial Motion Tracking of 2-DoF Joints. Sensors 2022, 22, 9850. [Google Scholar] [CrossRef]
- Cutti, A.G.; Ferrari, A.; Garofalo, P.; Raggi, M.; Cappello, A.; Ferrari, A. ‘Outwalk’: A protocol for clinical gait analysis based on inertial and magnetic sensors. Med. Biol. Eng. Comput. 2010, 48, 17–25. [Google Scholar] [CrossRef]
- Favre, J.; Jolles, B.; Aissaoui, R.; Aminian, K. Ambulatory measurement of 3D knee joint angle. J. Biomech. 2008, 41, 1029–1035. [Google Scholar] [CrossRef]
- Palermo, E.; Rossi, S.; Marini, F.; Patanè, F.; Cappa, P. Experimental evaluation of accuracy and repeatability of a novel body-to-sensor calibration procedure for inertial sensor-based gait analysis. Measurement 2014, 52, 145–155. [Google Scholar] [CrossRef]
- Karduna, A.R.; McClure, P.W.; Michener, L.A.; Sennett, B. Dynamic Measurements of Three-Dimensional Scapular Kinematics: A Validation Study. J. Biomech. Eng. 2001, 123, 184–190. [Google Scholar] [CrossRef] [PubMed]
- De Baets, L.; van der Straaten, R.; Matheve, T.; Timmermans, A. Shoulder assessment according to the international classification of functioning by means of inertial sensor technologies: A systematic review. Gait Posture 2017, 57, 278–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuesta-Vargas, A.I.; Galán-Mercant, A.; Williams, J.M. The use of inertial sensors system for human motion analysis. Phys. Ther. Rev. 2010, 15, 462–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poitras, I.; Dupuis, F.; Bielmann, M.; Campeau-Lecours, A.; Mercier, C.; Bouyer, L.J.; Roy, J.-S. Validity and Reliability of Wearable Sensors for Joint Angle Estimation: A Systematic Review. Sensors 2019, 19, 1555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schall, M.C.; Fethke, N.B.; Chen, H.; Oyama, S.; Douphrate, D.I. Accuracy and repeatability of an inertial measurement unit system for field-based occupational studies. Ergonomics 2015, 59, 591–602. [Google Scholar] [CrossRef]
- Zhang, Z.-Q.; Wong, W.-C.; Wu, J.-K. Ubiquitous Human Upper-Limb Motion Estimation using Wearable Sensors. IEEE Trans. Inf. Technol. Biomed. 2011, 15, 513–521. [Google Scholar] [CrossRef]
- Shuster, M.D.; Oh, S.D. Three-axis attitude determination from vector observations. J. Guid. Control 1981, 4, 70–77. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 89, 105906. [Google Scholar]
- Downs, S.H.; Black, N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J. Epidemiol. Community Health 1998, 52, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; Strobe Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. Int. J. Surg. 2014, 12, 1495–1499. [Google Scholar] [CrossRef] [Green Version]
- Pérez, R.; Costa, Ú.; Torrent, M.; Solana, J.; Opisso, E.; Cáceres, C.; Tormos, J.M.; Medina, J.; Gómez, E.J. Upper Limb Portable Motion Analysis System Based on Inertial Technology for Neurorehabilitation Purposes. Sensors 2010, 10, 10733–10751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Gohary, M.; McNames, J. Shoulder and Elbow Joint Angle Tracking with Inertial Sensors. IEEE Trans. Biomed. Eng. 2012, 59, 2635–2641. [Google Scholar] [CrossRef] [PubMed]
- Morrow, M.M.; Lowndes, B.; Fortune, E.; Kaufman, K.R.; Hallbeck, M.S. Validation of Inertial Measurement Units for Upper Body Kinematics. J. Appl. Biomech. 2017, 33, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Bessone, V.; Höschele, N.; Schwirtz, A.; Seiberl, W. Validation of a new inertial measurement unit system based on different dynamic movements for future in-field applications. Sports Biomech. 2019, 21, 685–700. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Qiu, S.; Wang, Z.; Li, J.; Wang, J. Canoeing Motion Tracking and Analysis via Multi-Sensors Fusion. Sensors 2020, 20, 2110. [Google Scholar] [CrossRef] [Green Version]
- Humadi, A.; Nazarahari, M.; Ahmad, R.; Rouhani, H. Instrumented Ergonomic Risk Assessment Using Wearable Inertial Measurement Units: Impact of Joint Angle Convention. IEEE Access 2020, 9, 7293–7305. [Google Scholar] [CrossRef]
- Choo, C.Z.Y.; Chow, J.Y.; Komar, J. Validation of the Perception Neuron system for full-body motion capture. PLoS ONE 2022, 17, e0262730. [Google Scholar] [CrossRef]
- Qiu, S.; Hao, Z.; Wang, Z.; Liu, L.; Liu, J.; Zhao, H.; Fortino, G. Sensor Combination Selection Strategy for Kayak Cycle Phase Segmentation Based on Body Sensor Networks. IEEE Internet Things J. 2021, 9, 4190–4201. [Google Scholar] [CrossRef]
- Goreham, J.A.; MacLean, K.F.; Ladouceur, M. The validation of a low-cost inertial measurement unit system to quantify simple and complex upper-limb joint angles. J. Biomech. 2022, 134, 111000. [Google Scholar] [CrossRef]
- Muller, P.; Begin, M.-A.; Schauer, T.; Seel, T. Alignment-Free, Self-Calibrating Elbow Angles Measurement Using Inertial Sensors. IEEE J. Biomed. Health Inform. 2016, 21, 312–319. [Google Scholar] [CrossRef]
- Callejas-Cuervo, M.; Ruíz-Olaya, A.F.; Rafael, R.M.G. Validation of an inertial sensor-based platform to acquire kinematic information for human joint angle estimation. DYNA 2016, 83, 154–159. [Google Scholar] [CrossRef]
- Laidig, D.; Müller, P.; Seel, T. Automatic anatomical calibration for IMU-based elbow angle measurement in disturbed magnetic fields. Curr. Dir. Biomed. Eng. 2017, 3, 167–170. [Google Scholar] [CrossRef]
- Choi, Y.C.; Khuyagbaatar, B.; Cheon, M.; Batbayar, T.; Lee, S.; Kim, Y.H. Kinematic Comparison of Double Poling Techniques Between National and College Level Cross-Country Skiers Using Wearable Inertial Measurement Unit Sensors. Int. J. Precis. Eng. Manuf. 2021, 22, 1105–1112. [Google Scholar] [CrossRef]
- Parel, I.; Cutti, A.G.; Kraszewski, A.; Verni, G.; Hillstrom, H.; Kontaxis, A. Intra-protocol repeatability and inter-protocol agreement for the analysis of scapulo-humeral coordination. Med. Biol. Eng. Comput. 2013, 52, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Muller, P.; Begin, M.A.; Schauer, T.; Seel, T. Alignment-free, self-calibrating elbow angles measurement using inertial sensors. In Proceedings of the 3rd IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2016, Las Vegas, NV, USA, 24–27 February 2016; pp. 583–586. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84968611379&doi=10.1109%2fBHI.2016.7455965&partnerID=40&md5=518d6e5923769a603bfdc5e39d28c696 (accessed on 1 October 2022).
- PSlade, P.; Habib, A.; Hicks, J.L.; Delp, S.L. An Open-Source and Wearable System for Measuring 3D Human Motion in Real-Time. IEEE Trans. Biomed. Eng. 2021, 69, 678–688. [Google Scholar] [CrossRef]
- Callejas-Cuervo, M.; Gutierrez, R.M.; Hernandez, A.I. Joint amplitude MEMS based measurement platform for low cost and high accessibility telerehabilitation: Elbow case study. J. Bodyw. Mov. Ther. 2017, 21, 574–581. [Google Scholar] [CrossRef]
- Alarcón-Aldana, A.C.; Callejas-Cuervo, M.; Bastos-Filho, T.; Bó, A.P.L. A Kinematic Information Acquisition Model That Uses Digital Signals from an Inertial and Magnetic Motion Capture System. Sensors 2022, 22, 4898. [Google Scholar] [CrossRef]
- Bartoszek, A.; Struzik, A.; Jaroszczuk, S.; Woźniewski, M.; Pietraszewski, B. Comparison of the optoelectronic BTS Smart system and IMU-based MyoMotion system for the assessment of gait variables. Acta Bioeng. Biomech. 2022, 24, 103–116. [Google Scholar] [CrossRef]
- Chan, L.Y.T.; Chua, C.S.; Chou, S.M.; Seah, R.Y.B.; Huang, Y.; Luo, Y.; Dacy, L.; Razak, H.R.B.A. Assessment of shoulder range of motion using a commercially available wearable sensor—A validation study. Mhealth 2022, 8, 30. [Google Scholar] [CrossRef]
- Henschke, J.; Kaplick, H.; Wochatz, M.; Engel, T. Assessing the validity of inertial measurement units for shoulder kinematics using a commercial sensor-software system: A validation study. Health Sci. Rep. 2022, 5, e772. [Google Scholar] [CrossRef]
- Serra-Hsu, E.; Taboga, P. Validation of Fuze IMU system for ergonomics assessments. bioRxiv 2022. bioRxiv:10.1101/2022.12.05.519202. [Google Scholar]
- Wu, Y.; Tao, K.; Chen, Q.; Tian, Y.; Sun, L. A Comprehensive Analysis of the Validity and Reliability of the Perception Neuron Studio for Upper-Body Motion Capture. Sensors 2022, 22, 6954. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Li, X.; Wang, L.; Chen, Z.; Shi, Y.; Zheng, S.; Li, M. IMU Motion Capture Method with Adaptive Tremor Attenuation in Teleoperation Robot System. Sensors 2022, 22, 3353. [Google Scholar] [CrossRef]
- Friesen, K.B.; Sigurdson, A.; Lang, A.E. Comparison of scapular kinematics from optical motion capture and inertial measurement units during a work-related and functional task protocol. Med. Biol. Eng. Comput. 2023, 61, 1521–1531. [Google Scholar] [CrossRef] [PubMed]
- Truppa, L.; Bergamini, E.; Garofalo, P.; Costantini, M.; Fiorentino, C.; Vannozzi, G.; Sabatini, A.M.; Mannini, A. An Innovative Sensor Fusion Algorithm for Motion Tracking with On-Line Bias Compensation: Application to Joint Angles Estimation in Yoga. IEEE Sens. J. 2021, 21, 21285–21294. [Google Scholar] [CrossRef]
- Ertzgaard, P.; Öhberg, F.; Gerdle, B.; Grip, H. A new way of assessing arm function in activity using kinematic Exposure Variation Analysis and portable inertial sensors—A validity study. Man. Ther. 2016, 21, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Picerno, P.; Caliandro, P.; Iacovelli, C.; Simbolotti, C.; Crabolu, M.; Pani, D.; Vannozzi, G.; Reale, G.; Rossini, P.M.; Padua, L.; et al. Upper limb joint kinematics using wearable magnetic and inertial measurement units: An anatomical calibration procedure based on bony landmark identification. Sci. Rep. 2019, 9, 14449. [Google Scholar] [CrossRef] [Green Version]
- Gil-Agudo, A.; Reyes-Guzmán, A.D.L.; Dimbwadyo-Terrer, I.; Peñasco-Martín, B.; Bernal-Sahún, A.; López-Monteagudo, P.; Del-Ama, A.J.; Pons, J.L. A novel motion tracking system for evaluation of functional rehabilitation of the upper limbs. Neural Regen. Res. 2013, 8, 1773–1782. [Google Scholar] [CrossRef] [Green Version]
- Lambrecht, J.M.; Kirsch, R.F. Miniature Low-Power Inertial Sensors: Promising Technology for Implantable Motion Capture Systems. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 22, 1138–1147. [Google Scholar] [CrossRef]
- Fantozzi, S.; Giovanardi, A.; Magalhães, F.A.; Di Michele, R.; Cortesi, M.; Gatta, G. Assessment of three-dimensional joint kinematics of the upper limb during simulated swimming using wearable inertial-magnetic measurement units. J. Sports Sci. 2015, 34, 1073–1080. [Google Scholar] [CrossRef]
- Robert-Lachaine, X.; Mecheri, H.; Larue, C.; Plamondon, A. Validation of inertial measurement units with an optoelectronic system for whole-body motion analysis. Med. Biol. Eng. Comput. 2016, 55, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Mavor, M.P.; Ross, G.B.; Clouthier, A.L.; Karakolis, T.; Graham, R.B. Validation of an IMU Suit for Military-Based Tasks. Sensors 2020, 20, 4280. [Google Scholar] [CrossRef] [PubMed]
- Robert-Lachaine, X.; Mecheri, H.; Muller, A.; LaRue, C.; Plamondon, A. Validation of a low-cost inertial motion capture system for whole-body motion analysis. J. Biomech. 2019, 99, 109520. [Google Scholar] [CrossRef] [PubMed]
- Dufour, J.S.; Aurand, A.M.; Weston, E.B.; Haritos, C.N.; Souchereau, R.A.; Marras, W.S. Dynamic Joint Motions in Occupational Environments as Indicators of Potential Musculoskeletal Injury Risk. J. Appl. Biomech. 2021, 37, 196–203. [Google Scholar] [CrossRef]
- Luinge, H.; Veltink, P.; Baten, C. Ambulatory measurement of arm orientation. J. Biomech. 2007, 40, 78–85. [Google Scholar] [CrossRef]
- Madrigal, J.A.B.; Cardiel, E.; Rogeli, P.; Salas, L.L.; Guerrero, R.M. Evaluation of suitability of a micro-processing unit of motion analysis for upper limb tracking. Med. Eng. Phys. 2016, 38, 793–800. [Google Scholar] [CrossRef]
- Chen, H.; Schall, M.C.; Fethke, N. Accuracy of angular displacements and velocities from inertial-based inclinometers. Appl. Ergon. 2018, 67, 151–161. [Google Scholar] [CrossRef]
- Chen, H.; Schall, M.C.; Fethke, N.B. Measuring upper arm elevation using an inertial measurement unit: An exploration of sensor fusion algorithms and gyroscope models. Appl. Ergon. 2020, 89, 103187. [Google Scholar] [CrossRef]
- Duan, Y.; Zhang, X.; Li, Z. A New Quaternion-Based Kalman Filter for Human Body Motion Tracking Using the Second Estimator of the Optimal Quaternion Algorithm and the Joint Angle Constraint Method with Inertial and Magnetic Sensors. Sensors 2020, 20, 6018. [Google Scholar] [CrossRef]
- Truppa, L.; Bergamini, E.; Garofalo, P.; Vannozzi, G.; Sabatini, A.M.; Mannini, A. Magnetic-Free Quaternion-Based Robust Unscented Kalman Filter for Upper Limb Kinematic Analysis. IEEE Sens. J. 2022, 23, 3212–3219. [Google Scholar] [CrossRef]
- de Vries, W.; Veeger, H.; Cutti, A.; Baten, C.; van der Helm, F. Functionally interpretable local coordinate systems for the upper extremity using inertial & magnetic measurement systems. J. Biomech. 2010, 43, 1983–1988. [Google Scholar] [CrossRef] [PubMed]
- Barreto, J.; Peixoto, C.; Cabral, S.; Williams, A.M.; Casanova, F.; Pedro, B.; Veloso, A.P. Concurrent Validation of 3D Joint Angles during Gymnastics Techniques Using Inertial Measurement Units. Electronics 2021, 10, 1251. [Google Scholar] [CrossRef]
- Marta, G.; Simona, F.; Andrea, C.; Dario, B.; Stefano, S.; Federico, V.; Marco, B.; Francesco, B.; Stefano, M.; Alessandra, P. Wearable Biofeedback Suit to Promote and Monitor Aquatic Exercises: A Feasibility Study. IEEE Trans. Instrum. Meas. 2019, 69, 1219–1231. [Google Scholar] [CrossRef]
- Pedro, B.; Cabral, S.; Veloso, A.P. Concurrent validity of an inertial measurement system in tennis forehand drive. J. Biomech. 2021, 121, 110410. [Google Scholar] [CrossRef]
- Ligorio, G.; Zanotto, D.; Sabatini, A.; Agrawal, S. A novel functional calibration method for real-time elbow joint angles estimation with magnetic-inertial sensors. J. Biomech. 2017, 54, 106–110. [Google Scholar] [CrossRef]
- Ruiz-Malagón, E.J.; Delgado-García, G.; Castro-Infantes, S.; Ritacco-Real, M.; Soto-Hermoso, V.M. Validity and reliability of NOTCH® inertial sensors for measuring elbow joint angle during tennis forehand at different sampling frequencies. Measurement 2022, 201, 111666. [Google Scholar] [CrossRef]
- Guignard, B.; Ayad, O.; Baillet, H.; Mell, F.; Escobar, D.S.; Boulanger, J.; Seifert, L. Validity, reliability and accuracy of inertial measurement units (IMUs) to measure angles: Application in swimming. Sports Biomech. 2021, 1–33. [Google Scholar] [CrossRef]
- Bouvier, B.; Sávescu, A.; Duprey, S.; Dumas, R. Benefits of functional calibration for estimating elbow joint angles using magneto-inertial sensors: Preliminary results. Comput. Methods Biomech. Biomed. Eng. 2014, 17, 108–109. Available online: https://access.ovid.com/custom/redirector/index.html?dest=https://go.openathens.net/redirector/unimelb.edu.au?url=http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med11&AN=25074188 (accessed on 1 October 2022). [CrossRef]
- Elambrecht, S.; Gallego, J.; Rocon, E.; Pons, J.L. Automatic real-time monitoring and assessment of tremor parameters in the upper limb from orientation data. Front. Neurosci. 2014, 8, 221. [Google Scholar] [CrossRef] [Green Version]
- Ristic, B.; Arulampalam, S.; Gordon, N. Beyond the Kalman Filter: Particle Filters for Tracking Applications; Artech House: Norwood, MA, USA, 2004. [Google Scholar]
- Haugen, F. he Good Gain method for simple experimental tuning of PI controllers. Model. Identif. Control A Nor. Res. Bull. 2012, 33, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Wahba, G. A Least Squares Estimate of Satellite Attitude. SIAM Rev. 1965, 7, 409. [Google Scholar] [CrossRef]
- Mortari, D. Second Estimator of the Optimal Quaternion. J. Guid. Control Dyn. 2000, 23, 885–888. [Google Scholar] [CrossRef]
- Laidig, D.; Seel, T. VQF: Highly accurate IMU orientation estimation with bias estimation andr magnetic disturbance rejection. Inf. Fusion 2023, 91, 187–204. [Google Scholar] [CrossRef]
- Sethi, A.; Ting, J.; Allen, M.; Clark, W.; Weber, D. Advances in motion and electromyography based wearable technology for upper extremity function rehabilitation: A review. J. Hand Ther. 2020, 33, 180–187. [Google Scholar] [CrossRef]
- Wei, W.; Kurita, K.; Kuang, J.; Gao, A. Real-time limb motion tracking with a single imu sensor for physical therapy exercises. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Guadalajara, Mexico, 1–5 November 2021; pp. 7152–7157. [Google Scholar]
- Brochard, S.; Lempereur, M.; Rémy-Néris, O. Double calibration: An accurate, reliable and easy-to-use method for 3D scapular motion analysis. J. Biomech. 2011, 44, 751–754. [Google Scholar] [CrossRef]
- Prinold, J.A.; Shaheen, A.F.; Bull, A.M. Skin-fixed scapula trackers: A comparison of two dynamic methods across a range of calibration positions. J. Biomech. 2011, 44, 2004–2007. [Google Scholar] [CrossRef] [Green Version]
- van Andel, C.; van Hutten, K.; Eversdijk, M.; Veeger, D.; Harlaar, J. Recording scapular motion using an acromion marker cluster. Gait Posture 2009, 29, 123–128. [Google Scholar] [CrossRef]
- Lang, A.E.; Kim, S.Y.; Milosavljevic, S.; Dickerson, C.R. The utility of the acromion marker cluster (AMC) in a clinical population. J. Electromyogr. Kinesiol. 2019, 62, 102298. [Google Scholar] [CrossRef]
- van den Noort, J.C.; Wiertsema, S.H.; Hekman, K.M.; Schönhuth, C.P.; Dekker, J.; Harlaar, J. Measurement of scapular dyskinesis using wireless inertial and magnetic sensors: Importance of scapula calibration. J. Biomech. 2015, 48, 3460–3468. [Google Scholar] [CrossRef]
- Myn, U.; Link, M.; Awinda, M. Xsens Mvn User Manual; Xsens: Enschede, The Netherlands, 2015. [Google Scholar]
- Page, A.; De Rosario, H.; Mata, V.; Besa, A.; Mata-Amela, V. Model of Soft Tissue Artifact Propagation to Joint Angles in Human Movement Analysis. J. Biomech. Eng. 2014, 136, 034502. [Google Scholar] [CrossRef] [Green Version]
- Hua, A.; Chaudhari, P.; Johnson, N.; Quinton, J.; Schatz, B.; Buchner, D.; Hernandez, M.E. Evaluation of Machine Learning Models for Classifying Upper Extremity Exercises Using Inertial Measurement Unit-Based Kinematic Data. IEEE J. Biomed. Health Inform. 2020, 24, 2452–2460. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.; Kim, B.; Park, S. Prediction of Lower Limb Kinetics and Kinematics during Walking by a Single IMU on the Lower Back Using Machine Learning. Sensors 2019, 20, 130. [Google Scholar] [CrossRef] [Green Version]
- Eyobu, O.S.; Han, D.S. Feature Representation and Data Augmentation for Human Activity Classification Based on Wearable IMU Sensor Data Using a Deep LSTM Neural Network. Sensors 2018, 18, 2892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senanayake, D.; Halgamuge, S.; Ackland, D.C. Real-time conversion of inertial measurement unit data to ankle joint angles using deep neural networks. J. Biomech. 2021, 125, 110552. [Google Scholar] [CrossRef] [PubMed]
- Mundt, M.; Koeppe, A.; David, S.; Witter, T.; Bamer, F.; Potthast, W.; Markert, B. Estimation of Gait Mechanics Based on Simulated and Measured IMU Data Using an Artificial Neural Network. Front. Bioeng. Biotechnol. 2020, 8, 41. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, P.M.S.; Matos, A.C.; Santos, P.H.; Cardoso, J.S. Machine Learning Improvements to Human Motion Tracking with IMUs. Sensors 2020, 20, 6383. [Google Scholar] [CrossRef] [PubMed]
- Christian, M.; Uyanik, C.; Erdemir, E.; Kaplanoglu, E.; Bhattacharya, S.; Bailey, R.; Kawamura, K.; Hargrove, S.K. Application of Deep Learning to IMU sensor motion. In 2019 SoutheastCon; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Zimmermann, T.; Taetz, B.; Bleser, G. IMU-to-Segment Assignment and Orientation Alignment for the Lower Body Using Deep Learning. Sensors 2018, 18, 302. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Yang, Z.; Dong, T. A review of wearable technologies for elderly care that can accurately track indoor position, recognize physical activities and monitor vital signs in real time. Sensors 2017, 17, 341. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhang, Z.; Gao, N.; Xiao, Y.; Meng, Z.; Li, Z. Cost-Effective Wearable Indoor Localization and Motion Analysis via the Integration of UWB and IMU. Sensors 2020, 20, 344. [Google Scholar] [CrossRef] [Green Version]
- Romano, A.; Favetta, M.; Summa, S.; Schirinzi, T.; Bertini, E.S.; Castelli, E.; Vasco, G.; Petrarca, M. Upper Body Physical Rehabilitation for Children with Ataxia through IMU-Based Exergame. J. Clin. Med. 2022, 11, 1065. [Google Scholar] [CrossRef]
- Gustafson, J.A.; Dowling, B.; Heidloff, D.; Quigley, R.J.; Garrigues, G.E. Optimizing Pitching Performance through Shoulder and Elbow Biomechanics. Oper. Tech. Sports Med. 2022, 30, 150890. [Google Scholar] [CrossRef]
- Harnett, K.; Plint, B.; Chan, K.Y.; Clark, B.; Netto, K.; Davey, P.; Müller, S.; Rosalie, S. Validating an inertial measurement unit for cricket fast bowling: A first step in assessing the feasibility of diagnosing back injury risk in cricket fast bowlers during a tele-sport-and-exercise medicine consultation. PeerJ 2022, 10, e13228. [Google Scholar] [CrossRef] [PubMed]
- Vleugels, R.; Van Herbruggen, B.; Fontaine, J.; De Poorter, E. Ultra-Wideband Indoor Positioning and IMU-Based Activity Recognition for Ice Hockey Analytics. Sensors 2021, 21, 4650. [Google Scholar] [CrossRef]
- Mavor, M.P.; Chan, V.C.; Gruevski, K.M.; Bossi, L.L.; Karakolis, T.; Graham, R.B. Assessing the Soldier Survivability Tradespace Using a Single IMU. IEEE Access 2023, 11, 69762–69772. [Google Scholar] [CrossRef]
- González-Alonso, J.; Oviedo-Pastor, D.; Aguado, H.J.; Díaz-Pernas, F.J.; González-Ortega, D.; Martínez-Zarzuela, M. Custom IMU-based wearable system for robust 2.4 GHz wireless human body parts orientation tracking and 3D movement visualization on an avatar. Sensors 2021, 21, 6642. [Google Scholar] [CrossRef]
- Yun, H.; Ponton, J.L.; Andujar, C.; Pelechano, N. Animation Fidelity in Self-Avatars: Impact on User Performance and Sense of Agency. In Proceedings of the 2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR), Shanghai, China, 25–29 March 2023; pp. 286–296. [Google Scholar] [CrossRef]
Study | Reported Joint Angle | IMU Placement Position | |||
---|---|---|---|---|---|
Torso | Scapula/Shoulder | Upper Arm/Humerus | Forearm | ||
[101] | EL | / | / | Lateral, distal upper arm | Dorsal, distal forearm |
[30] | ST, HT, EL | Sternum | Cranial, central-third scapular spine | Central-third, lateral-posterior upper arm | Dorsal, distal forearm |
[107] | HT | Sternum | / | Lateral, distal upper arm | Dorsal, distal forearm |
[66] | HT, EL | Middle back | / | Along external triceps long head | Dorsal, distal forearm |
[61] | HT, EL | Sternum | / | Lateral, distal upper arm | Dorsal, distal forearm |
[67] | HT, EL | / | / | Lateral, middle upper arm | Dorsal, distal forearm |
[94] | HT, EL | Central, frontal trunk | / | Lateral, middle upper arm | Dorsal, distal forearm |
[95] | HT, EL | Sternum | / | Upper arm | Distal forearm |
[79] | ST | Sternum | Cranial, central-third scapular spine | Central-third lateral-posterior upper arm | / |
[36] | HT, EL | Sternum | / | Central-third Lateral, upper arm | Dorsal, distal forearm |
[92] | HT, EL | Central back, below neck | / | Middle, lateral-posterior upper arm | Middle, dorsal-posterior forearm |
[96] | HT, EL | Sternum | / | Central-third, lateral-posterior upper arm | Dorsal, distal forearm |
[76] | EL | / | / | Lateral upper arm, bony region | Dorsal, distal forearm |
[102] | HT | / | / | Posterior, distal upper arm | / |
[75] | EL | / | Distal upper arm | Distal forearm | |
[60] | HT | Sternal notch | / | Lateral, middle upper arm | |
[77] | EL | / | / | Distal upper arm | Distal forearm |
[111] | EL | / | / | Lateral, middle upper arm | Dorsal, distal |
[68] | HT, EL | Sternum | / | Lateral, middle upper arm | Dorsal, middle forearm |
[97] | GH, EL | Sternum | Scapula | Lateral, distal upper arm | Dorsal, distal |
[103] | HT | / | / | Lateral, middle upper arm | / |
[69] | HT, EL | Sternum | / | Lateral, middle upper arm | Dorsal, middle forearm |
[93] | HT, EL | Sternum | / | Lateral, distal upper arm | Dorsal, distal forearm |
[104] | HT | / | / | Lateral, middle upper arm | / |
[105] | HT | / | / | Lateral, middle upper arm | / |
[41] | HT, EL | Middle sternum | / | Lateral, middle upper arm | Dorsal, middle forearm |
[70] | HT, EL | Central back | / | Lateral, middle upper arm | Dorsal, middle forearm |
[109] | HT | Central back | / | Lateral, middle upper arm | Dorsal, middle forearm |
[98] | GH, EL | Sternum | Acromion | Lateral, middle upper arm | Dorsal, middle forearm |
[99] | GH, EL | Sternum | Scapula | Lateral, distal upper arm | Dorsal, distal forearm |
[108] | GH, EL | Sternum | Mid scapular spine | Lateral, middle upper arm | Dorsal, middle forearm |
[78] | EL | Central, frontal trunk | / | Lateral, middle upper arm | Dorsal, distal forearm |
[100] | HT | Central back | / | Distal, lateral-posterior upper arm | / |
[113] | EL | / | / | Lateral, middle upper arm | Dorsal, middle forearm |
[71] | GH, EL | Sternum | Acromion | Upper arm | Forearm |
[110] | GH, EL | Sternum | Scapula | Lateral, distal upper arm | Dorsal, distal forearm |
[73] | HT, EL | Central back | / | Lateral, middle upper arm | Dorsal, middle forearm |
[91] | HT, EL | Sternum | / | Upper arm | Forearm |
[83] | EL | / | / | Lateral, lower 1/3 upper arm | Dorsal, lower 1/3 forearm |
[84] | HT, EL | C7 vertebrae | / | Lateral, middle upper arm | Dorsal, distal forearm |
[85] | HT | / | / | / | Dorsal, middle forearm |
[72] | HT, EL | Central back, below neck | Scapular superior angle | Lateral, middle upper arm | Dorsal, distal forearm |
[74] | HT, EL | Central, frontal trunk | / | Anterior, middle upper arm | Radial, middle forearm |
[86] | HT | Sternum | / | Anterior, middle upper arm | / |
[52] | EL | / | / | Distal upper arm | Distal forearm |
[112] | EL | / | / | Lateral, middle upper arm | Dorsal, middle forearm |
[87] | HT | T2 vertebrae | / | Lateral, distal upper arm | Dorsal, distal forearm |
[81] | HT, EL | Central back | / | Lateral, middle upper arm | Dorsal, middle forearm |
[106] | HT, EL | Sternum | / | Lateral upper arm | Lateral forearm |
[88] | HT, EL | T8 vertebrae | Cranial scapula | Lateral, distal upper arm | Dorsal, distal forearm |
[89] | HT, EL | / | / | Lateral, middle upper arm | Dorsal, middle forearm |
[90] | ST | Sternum | Acromion/mid-scapular spine | Posterior, distal upper arm | / |
Study | Sample | Quality Score | Calibration | Sensor Fusion | Joint Angle Calculation | Task | Error Metric | Kinematic Errors | ||
---|---|---|---|---|---|---|---|---|---|---|
Protraction-Retraction | Medial- Lateral Rotation | Anterior-Posterior Tilt | ||||||||
[30] | n = 1 | 16 | PSA, static | Xsens KF | EAD | Miscellaneous | RMSE | [0.2°, 3.2°] | [0.2°, 3.2°] | [0.2°, 3.2°] |
[79] | n = 23 | 20 | PSA, static | Custom | EAD | Shoulder F/E | Peak RMSE | 10.3° | 5° | 11.1° |
Shoulder AB/AD | 7.1° | 5° | 7.5° | |||||||
[90] | n = 30 | 21 | PSA, IMU scapula locator | Xsens KF | EAD | Abduction | RMSE at maximum humeral elevation | 12.2° | 9.8° | 15° |
Flexion | 10.8° | 9.4° | 18.8° | |||||||
Comb hair | 9.9° | 7° | 14.9° | |||||||
Wash axilla | 10.8° | 13.4° | 20.2° | |||||||
Tie apron | 12° | 13.7° | 25.2° | |||||||
Over head reach | 13.4° | 11.8° | 14.1° | |||||||
Side reach | 43° | 27.9° | 17.2° | |||||||
Forward transfer | 14.1° | 13.3° | 17.4° | |||||||
Floor lift | 13.6° | 15.8° | 13.9° | |||||||
Overhead lift | 17.9° | 12.8° | 14.7° |
Study | Sample | Quality Score | Calibration | Sensor fusion | Joint Angle Calculation | Task | Error Metric | Kinematic Errors | ||
---|---|---|---|---|---|---|---|---|---|---|
F/E | AB/AD | IN/EX | ||||||||
[97] | n = 12 | 20 | Static, FJM | Xsens KF | EAD | Box moving | RMSE | 35.8° | 19.7° | 40.2° |
[98] | n = 10 | 19 | Static | Xsens KF | Xsens PA | Military movements | RMSE ± SD (r) | 19.1° ± 15° | 15.2° ± 8.75° | 31.0°± 26.0° |
[99] | n = 5 | 19 | Static | Perception Neuron PA | EAD | Box moving | RMSE | 17.5° | 10.9° | 16° |
[108] | n = 10 | 18 | Static, FJM | Xsens KF | Xsens PA | Gymnastics move | RMSE | 12.57° | 9.86° | 8.46° |
[71] | n = 10 | 18 | Static | Xsens KF | Xsens PA | Box moving | RMSE (r) | 12.3° | 6.7° | 33.8° |
Box elevation | 14.6° | 6.9° | 29° | |||||||
Reaching at head height | 15.8° | 7.8° | 31.7° | |||||||
[110] | n = 29 | 18 | Static, FJM | Xsens KF | Xsens PA | Tennis ball hitting | RMSE | 6.1° | 3.5° | 4.1° |
Study | Sample | Quality Score | Calibration | Sensor Fusion | Joint Angle Calculation | Task | Error Metric | Kinematic Errors | |
---|---|---|---|---|---|---|---|---|---|
F/E | P/S | ||||||||
[101] | n = 1 | 16 | FJM | KF | Rotation matrix, least square filter | Eating routine | RMSE | 21° | / |
Grooming routine | 7° | / | |||||||
[30] | n = 1 | 16 | PSA, static | Xsens KF | EAD | Elbow F/E and P/S | RMSE | [0.2°, 3.2°] | [0.2°, 3.2°] |
[66] | n = 1 | 19 | PSA | Xsens KF | EAD | Elbow flexion and P/S | Peak error | 5.8° | 24.1° |
Water serving | Mean error | 18.6° | 11.7° | ||||||
[61] | n = 4 | 15 | PSA, static | Unscented KF | Forward kinematics | Arbitrary movement | RMSE | 6.2° | 13.0° |
[67] | n = 8 | 16 | Static | Unscented KF | Forward kinematics | Elbow F/E | RMSE | 6.5° | / |
Elbow P/S | / | 5.5° | |||||||
[94] | n = 1 | 16 | PSA | Xsens KF | ABV | Elbow F/E | Mean error ± SD | −0.54° ± 2.63° | / |
Elbow P/S | / | −5.16° ± 4.5° | |||||||
[95] | n = 1 | 18 | PSA | InvenSense PA, MFC | EAD | Reaching | RMSE | 7.9° | 1.5° |
[36] | n = 10 | 21 | PSA, static, FJM | Xsens KF | EAD | Elbow F/E | RMSE ± SD | 18.7° ± 2.7° | / |
Elbow P/S | / | 15.8° ± 6.3° | |||||||
Rotating wheel | 20.0° ± 3.7° | / | |||||||
[92] | n = 12 | 20 | FJM | KF | EAD | Miscellaneous | Proportional & Systematic error | 0.00X +2.00° | −0.00Z −1.20° |
[96] | n = 8 | 22 | PSA, static | Gradient decent | EAD | Simulated front crawl | RMSE | 15° | 10° |
Simulated breaststroke | 8° | 6° | |||||||
[82] | n = 3 | 9 | / | Invensense PA | INMOCAP PA | Elbow F/E | %RMSE | 2.44% | / |
[75] | n = 1 | 18 | Static, auto-calibration | Xsens KF | Kinematic constraint, EAD | Door opening | RMSE | 2.7° | 3.8° |
[77] | n =1 | 13 | Joint axis optimization | Xsens KF, MFC | Kinematic constraint, EAD | Pick-and-place, | Mean error ± SD | 4.09° ± 3.43° | −5.16° ± 6.63° |
drinking | |||||||||
[111] | n = 15 | 18 | FJM, static | YEI PA | EAD | Elbow F/E | RMSE | 4° | / |
Elbow P/S | / | 4° | |||||||
[68] | n = 6 | 19 | PSA, static | Xsens KF | EAD | Mimic surgery | RMSE | 8.2° ± 2.8° | / |
[97] | n = 12 | 20 | Static, FJM | Xsens KF | EAD | Box moving | RMSE | 6.2° | 12.2° |
[69] | n = 14 | 16 | PSA, static | iSen PA | iSen PA | Elbow F/E | RMSE | 27.1° | / |
[93] | n = 14 | 16 | IMU caliper | Xsens KF | EAD | Elbow F/E | RMSE | 1.9° ± 2.6° | / |
Elbow P/S | / | 2.9° ± 1.6 | |||||||
[41] | n = 10 | 21 | Static, FJM, optimization | KF, TRIAD | EAD | Yoga sequence | RMSE | 3° | 3.3° |
[70] | n = 6 | 14 | Static | MFC, gradient decent | ABV | Simulated rowing | % Mean error ± SD r | 2.19% ± 1.23% | / |
[98] | n = 10 | 19 | Static | Xsens KF | Xsens PA | Military movements | RMSE ± SD r | 10.9° ± 5.3° | 40.5° ± 27.6° |
[99] | n = 5 | 19 | Static | Perception Neuron PA | EAD | Box moving | RMSE | 14.9° | 14.3° |
[108] | n = 10 | 18 | Static, FJM | Xsens KF | Xsens PA | Gymnastics move | RMSE | 4.2° | / |
[78] | n = 10 | 10 | Static | Madgwick filter | Euler angle | Walking | %RMSE (r) | 5.80% | / |
[113] | n = 1 | 21 | Static, MFC, FJM | Madgwick filter | ABV | Elbow F/E | RMSE (r) | 8.23° | / |
Elbow F/E with P/S | 9.36° | / | |||||||
Walking | 5.98° | / | |||||||
Simulated front crawl | 5.6° | / | |||||||
Simulated rowing | 6.53° | / | |||||||
[71] | n = 10 | 18 | Static | Xsens KF | Xsens PA | Box moving | RMSE (r) | 28.2 | / |
Box elevation | 30.7 | / | |||||||
Reaching at head height | 34.2 | / | |||||||
[110] | n = 29 | 18 | Static, functional | Xsens KF | Xsens PA | Tennis ball hitting | RMSE | 1.5° | 13.1° |
[73] | / | 10 | Static | ADIS16448 PA | ABV | Rowing | Mean absolute error (r) | 3.28° | / |
[91] | n = 10 | 18 | Static, functional | Orthogonalization, drift compensation | EAD | Yoga sequence | Mean absolute error | 2° | 4° |
[83] | n = 1 | 17 | Static | KF | Rotation about fixed axis | Elbow F/E | RMSE | 3.82° | / |
Elbow P/S | / | 3.46° | |||||||
[84] | n = 1 | 21 | Static | KF | EAD | Nordic walking | Mean error (r) | 23.7° | / |
[72] | n = 10 | 17 | Static | Perception Neuron PA | / | Stationary walk | RMSE ± SD | 3.4° ± 2.15° | / |
Distance walk | 2.04° ± 1.48° | / | |||||||
Stationary jog | 3.89° ± 2.96° | / | |||||||
Distance jog | 1.92° ± 1.0° | / | |||||||
Stationary ball shot | 2.81° ± 2.18° | / | |||||||
Moving ball shot | 3.2° ± 1.75° | / | |||||||
[52] | n = 2 | 20 | Kinematic constraint, optimization | 6D VQF | EAD | Pick-and-place, drinking | RMSE | 2.1° | 3.7° |
[112] | n = 15 | 18 | Static, FJM | Notch PA | Notch PA | Tennis hitting | RMSE | 5.76° | 6.66° |
[74] | n = 15 | 17 | Static pose | Notch PA | Notch PA | Elbow F/E | Mean error ± SD | 17.55° ± 3.28° | / |
Hand-to-contralateral-shoulder | 9.91° ± 3.18° | / | |||||||
Hand-to-top-of-head | 3.34° ± 3.48° | / | |||||||
[81] | n = 5 | 19 | PSA, static | Mahony filter | Inverse kinematics | Fugl-Meyer task | RMSE | 5.2° ± 2.1° | / |
[106] | n = 10 | 19 | Static, FJM | Unscented KF | EAD | Yoga sequence | RMSE | 2.96° ± 0.95° | 6.79° ± 2.31° |
[88] | n = 7 | 20 | Static | Perception Neuron PA | EAD | Flexion | RMSE | 8.7° | / |
Extension | 5.8° | / | |||||||
Pronation | 7.2° | ||||||||
Supination | / | 7.8° | |||||||
Box lifting | 12.5° | 9.5° | |||||||
[89] | n = 1 | 12 | Regression modelling | gForcePro+ PA | ABV | Grasping | RMSE | 3.4° | 3.9° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Z.; Woodford, S.; Senanayake, D.; Ackland, D. Conversion of Upper-Limb Inertial Measurement Unit Data to Joint Angles: A Systematic Review. Sensors 2023, 23, 6535. https://doi.org/10.3390/s23146535
Fang Z, Woodford S, Senanayake D, Ackland D. Conversion of Upper-Limb Inertial Measurement Unit Data to Joint Angles: A Systematic Review. Sensors. 2023; 23(14):6535. https://doi.org/10.3390/s23146535
Chicago/Turabian StyleFang, Zhou, Sarah Woodford, Damith Senanayake, and David Ackland. 2023. "Conversion of Upper-Limb Inertial Measurement Unit Data to Joint Angles: A Systematic Review" Sensors 23, no. 14: 6535. https://doi.org/10.3390/s23146535
APA StyleFang, Z., Woodford, S., Senanayake, D., & Ackland, D. (2023). Conversion of Upper-Limb Inertial Measurement Unit Data to Joint Angles: A Systematic Review. Sensors, 23(14), 6535. https://doi.org/10.3390/s23146535