Optical Multi-Parameter Measuring System for Fluid and Air Bubble Recognition
Abstract
:1. Introduction
1.1. State of the Art on Acoustic and Electromagnetic Methods for Air Bubble Recognition in Fluids
1.2. State of the Art on Optical Methods for Air Bubble Recognition in Fluids
1.3. Current Work Motivations
1.4. Paper Structure
2. Materials and Methods
2.1. Fluidic Section
2.2. Optical Readout
2.3. Optical Signal Detection and Processing
3. Results
3.1. Refractive Index Detection
3.2. Air Bubble Detection
3.3. Characteristic Fingerprint Shape of the Photo-Detected Signals
3.4. Estimation of Air Bubble Traveling Speed
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Desai, P.D.; Ng, W.C.; Hines, M.J.; Riaz, Y.; Tesar, V.; Zimmerman, W.B. Comparison of Bubble Size Distributions Inferred from Acoustic, Optical Visualisation, and Laser Diffraction. Colloids Interfaces 2019, 3, 65. [Google Scholar] [CrossRef] [Green Version]
- Jenderka, K.V.; Dietrich, G.; Cobet, U.; Kopsch, B.; Klemenz, A.; Urbanek, P. Detection of micro bubbles in the extracorporeal circulation. In Proceedings of the IEEE International Ultrasonics Symposium, Sendai, Japan, 5–8 October 1998; Volume 2, pp. 1819–1822. [Google Scholar]
- Rivera, M.; López, E.; Cancelos, S. A non-invasive, low frequency resonant method to detect bubbles in liquid media. Appl. Acoust. 2021, 179, 108044. [Google Scholar] [CrossRef]
- Benech, P.; Novakov, E. Ultrasonic detection of air bubbles in ducts using PVDF. Meas. Sci. Technol. 1999, 10, 1032–1036. [Google Scholar] [CrossRef]
- Ozeri, S.; Shmilovitz, D.; Fainguelernt, J. Ultrasonic air bubble detection employing signal processing techniques. In Proceedings of the IEEE International Symposium on Industrial Electronics, Montreal, QC, Canada, 9–13 July 2006; Volume 4, pp. 2840–2845. [Google Scholar]
- Heese, F.; Robson, P.; Hall, L.D. Visualization of air bubbles by magnetic resonance imaging. IEEE Sens. J. 2005, 5, 277–279. [Google Scholar] [CrossRef]
- Rodrigues, D.V.Q.; Rodriguez, D.; Pugliese, V.; Watson, M.; Li, C. Air Bubble Detection Based on Portable mm-Wave Doppler Radars. In Proceedings of the 2021 IEEE MTT-S International Wireless Symposium, Nanjing, China, 23–26 May 2021; pp. 1–3. [Google Scholar]
- Vu Quoc, T.; Nguyen Dac, H.; Pham Quoc, T.; Nguyen Dinh, D.; Chu Duc, T. A printed circuit board capacitive sensor for air bubble inside fluidic flow detection. Microsyst. Technol. 2015, 21, 911–918. [Google Scholar] [CrossRef]
- Yunus, F.R.M.; Rahim, R.A.; Aw, S.R.; Ayob, N.M.N.; Goh, C.L.; Pusppanathan, M.J. Simulation study of electrode size in air-bubble detection for dual-mode integrated electrical resistance and ultrasonic transmission tomography. Powder Technol. 2014, 256, 224–232. [Google Scholar] [CrossRef]
- Murakawa, H.; Shimizu, T.; Eckert, S. Development of a high-speed ultrasonic tomography system for measurements of rising bubbles in a horizontal cross-section. Meas. J. Int. Meas. Confed. 2021, 182, 109654. [Google Scholar] [CrossRef]
- Ju, Y.; Wu, L.; Li, M.; Xiao, Q.; Wang, H. A novel hybrid model for flow image segmentation and bubble pattern extraction. Meas. J. Int. Meas. Confed. 2022, 192, 110861. [Google Scholar] [CrossRef]
- Lee, H. Detection of Air Bubbles and Liquid Droplet in a Dielectric Tube by Thermo-Elastic Optical Indicator Microscopy. IEEE Access 2022, 10, 33537–33546. [Google Scholar] [CrossRef]
- Rahim, R.A.; Nayan, N.M.; Rahiman, M.H.F. Ultrasonic Tomography System For Liquid/Gas Flow: Frame Rate Comparison Between Visual Basic And Visual C++ Programming. J. Teknol. 2006, 44, 131–150. [Google Scholar]
- Fadzil, N.S.M.; Rahim, R.A.; Karis, M.S.; Muji, S.Z.M.; Sahib, M.F.A.; Mansor, M.S.B.; Ayob, N.M.N.; Jumaah, M.F.; Zawahir, M.Z. Hardware design of laser optical tomography system for detection of bubbles column. J. Teknol. Sci. Eng. 2013, 64, 69–73. [Google Scholar]
- Jamaludin, J.; Rahim, R.A.; Rahiman, M.H.F.; Rohani, J.M. Charge coupled device based on optical tomography system in detecting air bubbles in crystal clear water. Flow Meas. Instrum. 2016, 50, 13–25. [Google Scholar] [CrossRef]
- Lichti, M.; Cheng, X.; Stephani, H.; Bart, H.-J. Online Detection of Ellipsoidal Bubbles by an Innovative Optical Approach. Chem. Eng. Technol. 2019, 42, 506–511. [Google Scholar] [CrossRef]
- De Somer, F.M.J.J.; Vetrano, M.R.; Van Beeck, J.P.A.J.; Van Nooten, G.J. Extracorporeal bubbles: A word of caution. Interact. Cardiovasc. Thorac. Surg. 2010, 10, 995–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfarraj, B.A.; Alkhedhair, A.M.; Al-Harbi, A.A.; Nowak, W.; Alfaleh, S.A. Measurement of the air bubble size and velocity from micro air bubble generation (MBG) in diesel using optical methods. Energy Transit. 2020, 4, 155–162. [Google Scholar] [CrossRef]
- Lim, H.J.; Chang, K.A.; Su, C.B.; Chen, C.Y. Bubble velocity, diameter, and void fraction measurements in a multiphase flow using fiber optic reflectometer. Rev. Sci. Instrum. 2008, 79, 125105. [Google Scholar] [CrossRef] [PubMed]
- Wesley, D.J.; Toolan, D.T.W.; Brittle, S.A.; Howse, J.R.; Zimmerman, W.B. Development of an optical microscopy system for automated bubble cloud analysis. Appl. Opt. 2016, 55, 6102. [Google Scholar] [CrossRef]
- Dollery, C.; Sullivan, I.; Bull, C.; Bauraind, O.; Lancet, P.M.-T. Thrombosis and embolism in long-term central venous access for parenteral nutrition. Lancet 1994, 344, 1043–1045. [Google Scholar] [CrossRef]
- Meadows, N. Monitoring and complications of parenteral nutrition. Nutrition 1998, 14, 806–808. [Google Scholar] [CrossRef]
- Bello, V.; Bodo, E.; Merlo, S. Optical Identification of Parenteral Nutrition Solutions Exploiting Refractive Index Sensing. Sensors 2022, 22, 6815. [Google Scholar] [CrossRef]
- Radeka, V. Signal, noise and resolution in position-sensitive detectors. IEEE Trans. Nucl. Sci. 1974, 21, 51–64. [Google Scholar] [CrossRef]
- Chiavaioli, F.; Gouveia, C.A.J.; Jorge, P.A.S.; Baldini, F. Towards a uniform metrological assessment of grating-based optical fiber sensors: From refractometers to biosensors. Biosensors 2017, 7, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bello, V.; Bodo, E.; Merlo, S. Optical Multi-Parameter Measuring System for Fluid and Air Bubble Recognition. Sensors 2023, 23, 6684. https://doi.org/10.3390/s23156684
Bello V, Bodo E, Merlo S. Optical Multi-Parameter Measuring System for Fluid and Air Bubble Recognition. Sensors. 2023; 23(15):6684. https://doi.org/10.3390/s23156684
Chicago/Turabian StyleBello, Valentina, Elisabetta Bodo, and Sabina Merlo. 2023. "Optical Multi-Parameter Measuring System for Fluid and Air Bubble Recognition" Sensors 23, no. 15: 6684. https://doi.org/10.3390/s23156684
APA StyleBello, V., Bodo, E., & Merlo, S. (2023). Optical Multi-Parameter Measuring System for Fluid and Air Bubble Recognition. Sensors, 23(15), 6684. https://doi.org/10.3390/s23156684