Determination of Greenhouse Gas Concentrations from the 16U CubeSat Spacecraft Using Fourier Transform Infrared Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Spacecraft Design
2.2. FTIR Spectrometer Unit
2.3. Positioning an Object on the Ground
2.4. Service System Unit
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CubeSat | A class of miniaturized satellite based around a form factor consisting of 10 cm (3.9 in) cubes |
EnMAP | Environmental Mapping and Analysis Program |
FOV | Field of View |
FTIR | Fourier Transform Infrared |
GeoCarb | The Geostationary Carbon Cycle Observatory |
GNSS | Global Navigation Satellite System |
GOSAT | Greenhouse Gases Observing Satellite |
GHGSat | Greenhouse Gas Satellite |
HITRAN | High Resolution Transmission Database |
IR | Infrared |
IFOV | Instantaneous Field of View |
LiFePO4 | Lithium–Iron–Phosphate Batteries |
MicroCarb | Carbon Dioxide Monitoring Mission |
MetOp | Meteorological Operational satellite |
MPPT | Maximum Power Point Tracking |
NEP | Noise Equivalent Power |
NIR | Near Infrared |
NDIR | Non-Dispersive Infrared |
OCO | Orbiting Carbon Observatory |
PRISMA | Precursore IperSpettrale della Missione Applicativa, Hyperspectral Precursor of the Application Mission |
ppm | Parts Per Million |
SNR | Signal-to-Noise Ratio |
SWIR | Short-Wavelength Infrared |
SSO | Sun-Synchronous Orbit |
SHS | Spatial Heterodyne Spectroscopy |
TANSO-FTS | Thermal and Near-Infrared Sensor for Carbon Observation Fourier-Transform Spectrometer |
UHF | Ultra-High Frequency |
References
- Meteor-M 1—space.skyrocket.de. Available online: https://space.skyrocket.de/doc_sdat/meteor-m-1.htm (accessed on 14 July 2023).
- Righetti, P.; de Juana Gamo, J.; Sancho, F. Metop-C deployment and start of three-satellite operations. Aeronaut. J. 2020, 124, 902–916. [Google Scholar] [CrossRef]
- Ouerghi, E.; Ehret, T.; de Franchis, C.; Facciolo, G.; Lauvaux, T.; Meinhardt, E.; Morel, J.M. Automatic Methane Plumes Detection in Time Series of SENTINEL-5P L1B Images. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 3, 147–154. [Google Scholar] [CrossRef]
- Tian, Y.; Hong, X.; Shan, C.; Sun, Y.; Wang, W.; Zhou, M.; Wang, P.; Lin, P.; Liu, C. Investigating the Performance of Carbon Monoxide and Methane Observations from Sentinel-5 Precursor in China. Remote Sens. 2022, 14, 6045. [Google Scholar] [CrossRef]
- Ehret, G.; Bousquet, P.; Pierangelo, C.; Alpers, M.; Millet, B.; Abshire, J.; Bovensmann, H.; Burrows, J.; Chevallier, F.; Ciais, P.; et al. MERLIN: A French-German Space Lidar Mission Dedicated to Atmospheric Methane. Remote Sens. 2017, 9, 1052. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Maksyutov, S.; Tsuruta, A.; Janardanan, R.; Ito, A.; Sasakawa, M.; Machida, T.; Morino, I.; Yoshida, Y.; Kaiser, J.; et al. Methane Emission Estimates by the Global High-Resolution Inverse Model Using National Inventories. Remote Sens. 2019, 11, 2489. [Google Scholar] [CrossRef] [Green Version]
- Janardanan, R.; Maksyutov, S.; Tsuruta, A.; Wang, F.; Tiwari, Y.K.; Valsala, V.; Ito, A.; Yoshida, Y.; Kaiser, J.W.; Janssens-Maenhout, G.; et al. Country-Scale Analysis of Methane Emissions with a High-Resolution Inverse Model Using GOSAT and Surface Observations. Remote Sens. 2020, 12, 375. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Cheng, J.; Song, X.; Liu, S.; Sun, Y.; Yu, D.; Fang, S. Global-Scale Evaluation of XCO2 Products from GOSAT, OCO-2 and CarbonTracker Using Direct Comparison and Triple Collocation Method. Remote Sens. 2022, 14, 5635. [Google Scholar] [CrossRef]
- Ehret, T.; Truchis, A.D.; Mazzolini, M.; Morel, J.M.; d’Aspremont, A.; Lauvaux, T.; Duren, R.; Cusworth, D.; Facciolo, G. Global Tracking and Quantification of Oil and Gas Methane Emissions from Recurrent Sentinel-2 Imagery. Environ. Sci. Technol. 2022, 56, 10517–10529. [Google Scholar] [CrossRef]
- Sánchez-García, E.; Gorroño, J.; Irakulis-Loitxate, I.; Varon, D.J.; Guanter, L. Mapping methane plumes at very high spatial resolution with the WorldView-3 satellite. Atmos. Meas. Tech. 2022, 15, 1657–1674. [Google Scholar] [CrossRef]
- Varon, D.J.; McKeever, J.; Jervis, D.; Maasakkers, J.D.; Pandey, S.; Houweling, S.; Aben, I.; Scarpelli, T.; Jacob, D.J. Satellite Discovery of Anomalously Large Methane Point Sources From Oil/Gas Production. Geophys. Res. Lett. 2019, 46, 13507–13516. [Google Scholar] [CrossRef] [Green Version]
- Saberioon, M.; Khosravi, V.; Brom, J.; Gholizadeh, A.; Segl, K. Examining the sensitivity of simulated EnMAP data for estimating chlorophyll-a and total suspended solids in inland waters. Ecol. Inform. 2023, 75, 102058. [Google Scholar] [CrossRef]
- Guanter, L.; Irakulis-Loitxate, I.; Gorroño, J.; Sánchez-García, E.; Cusworth, D.H.; Varon, D.J.; Cogliati, S.; Colombo, R. Mapping methane point emissions with the PRISMA spaceborne imaging spectrometer. Remote Sens. Environ. 2021, 265, 112671. [Google Scholar] [CrossRef]
- Maasakkers, J.D.; Varon, D.J.; Elfarsdóttir, A.; McKeever, J.; Jervis, D.; Mahapatra, G.; Pandey, S.; Lorente, A.; Borsdorff, T.; Foorthuis, L.R.; et al. Using satellites to uncover large methane emissions from landfills. Sci. Adv. 2022, 8, eabn9683. [Google Scholar] [CrossRef] [PubMed]
- Jervis, D.; McKeever, J.; Durak, B.O.A.; Sloan, J.J.; Gains, D.; Varon, D.J.; Ramier, A.; Strupler, M.; Tarrant, E. The GHGSat-D imaging spectrometer. Atmos. Meas. Tech. 2021, 14, 2127–2140. [Google Scholar] [CrossRef]
- Kuze, A.; Kikuchi, N.; Kataoka, F.; Suto, H.; Shiomi, K.; Kondo, Y. Detection of Methane Emission from a Local Source Using GOSAT Target Observations. Remote Sens. 2020, 12, 267. [Google Scholar] [CrossRef] [Green Version]
- Golomolzin, V.; Rublev, A.; Kiseleva, Y.V.; Kozlov, D.; Prokushkin, A.; Panov, A. Retrieval of total column carbon dioxide over Russia from Meteor–M No.2 satellite data. Meteorol. Gidrol. 2022, 4, 79–95. [Google Scholar] [CrossRef]
- Available online: https://space.oscar.wmo.int/instruments/view/oco (accessed on 17 July 2023).
- Available online: https://space.oscar.wmo.int/instruments/view/tanso_fts (accessed on 14 July 2023).
- Jacob, D.J.; Varon, D.J.; Cusworth, D.H.; Dennison, P.E.; Frankenberg, C.; Gautam, R.; Guanter, L.; Kelley, J.; McKeever, J.; Ott, L.E.; et al. Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane. Atmos. Chem. Phys. 2022, 22, 9617–9646. [Google Scholar] [CrossRef]
- Golovin, Y.M.; Zavelevich, F.S.; Kozlov, D.A.; Kozlov, I.A.; Monakhov, D.O.; Nikulin, A.G.; Uspensky, A.B.; Rublev, A.N.; Kukharsky, A.V. The IKFS-2 Infrared Fourier-Transform Spectrometer Operating Onboard the Meteor-M No.2 Satellite. Izv. Atmos. Ocean. Phys. 2018, 54, 1381–1390. [Google Scholar] [CrossRef]
- Polyakov, A.; Virolainen, Y.; Nerobelov, G.; Kozlov, D.; Timofeyev, Y. Six Years of IKFS-2 Global Ozone Total Column Measurements. Remote Sens. 2023, 15, 2481. [Google Scholar] [CrossRef]
- Luo, H.; Li, Z.; Wu, Y.; Qiu, Z.; Shi, H.; Wang, Q.; Xiong, W. Greenhouse Gases Monitoring Instrument on GaoFen-5 Satellite-II: Optical Design and Evaluation. Remote Sens. 2023, 15, 1105. [Google Scholar] [CrossRef]
- Available online: https://www.spacetechasia.com/china-launches-gaofen-5-hyperspectral-imaging-satellite-for-atmospheric-research/ (accessed on 17 July 2023).
- Mermigkas, M.; Topaloglou, C.; Balis, D.; Koukouli, M.E.; Hase, F.; Dubravica, D.; Borsdorff, T.; Lorente, A. FTIR Measurements of Greenhouse Gases over Thessaloniki, Greece in the Framework of COCCON and Comparison with S5P/TROPOMI Observations. Remote Sens. 2021, 13, 3395. [Google Scholar] [CrossRef]
- Zenevich, S.; Gazizov, I.; Churbanov, D.; Plyashkov, Y.; Spiridonov, M.; Talipov, R.; Rodin, A. A Concept of 2U Spaceborne Multichannel Heterodyne Spectroradiometer for Greenhouse Gases Remote Sensing. Remote Sens. 2021, 13, 2235. [Google Scholar] [CrossRef]
- Barducci, A.; Guzzi, D.; Lastri, C.; Marcoionni, P.; Nardino, V.; Pippi, I. Theoretical aspects of Fourier Transform Spectrometry and common path triangular interferometers. Opt. Express 2010, 18, 11622–11649. [Google Scholar] [CrossRef]
- Mendes, L.; Ogink, N.; Edouard, N.; van Dooren, H.; Tinôco, I.; Mosquera, J. NDIR Gas Sensor for Spatial Monitoring of Carbon Dioxide Concentrations in Naturally Ventilated Livestock Buildings. Sensors 2015, 15, 11239–11257. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Goo, S.-G.; Lim, J.S. Multi-Gas Analyzer Based on Tunable Filter Non-Dispersive Infrared Sensor: Application to the Monitoring of Eco-Friendly Gas Insulated Switchgears. Sensors 2022, 22, 8662. [Google Scholar] [CrossRef] [PubMed]
- Vafaei, M.; Amini, A. Chamberless NDIR CO2 Sensor Robust against Environmental Fluctuations. ACS Sensors 2021, 6, 1536–1542. [Google Scholar] [CrossRef]
- Shi, H.; Xiong, W.; Ye, H.; Wu, S.; Zhu, F.; Li, Z.; Luo, H.; Li, C.; Wang, X. High Resolution Fourier Transform Spectrometer for Ground-Based Verification of Greenhouse Gases Satellites. Remote Sens. 2023, 15, 1671. [Google Scholar] [CrossRef]
- Dils, B.; Cui, J.; Henne, S.; Mahieu, E.; Steinbacher, M.; Mazière, M.D. 1997–2007 CO trend at the high Alpine site Jungfraujoch: A comparison between NDIR surface in situ and FTIR remote sensing observations. Atmos. Chem. Phys. 2011, 11, 6735–6748. [Google Scholar] [CrossRef] [Green Version]
- Puig-Suari, J.; Turner, C.; Ahlgren, W. Development of the standard CubeSat deployer and a CubeSat class PicoSatellite. In Proceedings of the 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542), Big Sky, MT, USA, 10–17 March 2001; Volume 1, pp. 1/347–1/353. [Google Scholar] [CrossRef] [Green Version]
- Bashkin, S.V.; Karfidov, A.O.; Kornienko, V.N.; Lel’kov, M.V.; Mironov, A.I.; Morozov, A.N.; Svetlichnyi, S.I.; Tabalin, S.E.; Fufurin, I.L. An imaging Fourier transform spectroradiometer with a multi-element photodetector for the spectral range of 7–14 μm. Opt. Spectrosc. 2016, 121, 449–454. [Google Scholar] [CrossRef]
- Kochikov, I.V.; Morozov, A.N.; Svetlichnyi, S.I.; Fufurin, I.L. Substance recognition in the open atmosphere from a single Fourier transform spectroradiometer interferogram. Opt. Spectrosc. 2009, 106, 666–671. [Google Scholar] [CrossRef]
- Balashov, A.A.; Vaguine, V.A.; Golyak, I.S.; Morozov, A.N.; Khorokhorin, A.I. Multichannel Dynamic Fourier-Transform IR Spectrometer. J. Appl. Spectrosc. 2017, 84, 664–667. [Google Scholar] [CrossRef]
- Samsonov, D.A.; Tabalina, A.S.; Fufurin, I.L. QCL spectroscopy combined with the least squares method for substance analysis. J. Phys. Conf. Ser. 2017, 918, 012034. [Google Scholar] [CrossRef]
- Mayerhöfer, T.G.; Pahlow, S.; Popp, J. The Bouguer-Beer-Lambert Law: Shining Light on the Obscure. ChemPhysChem 2020, 21, 2029–2046. [Google Scholar] [CrossRef]
- Yuen, K. Home—ocov2.jpl.nasa.gov. Available online: https://ocov2.jpl.nasa.gov (accessed on 16 March 2023).
- Doughty, R.; Kurosu, T.P.; Parazoo, N.; Köhler, P.; Wang, Y.; Sun, Y.; Frankenberg, C. Global GOSAT, OCO-2, and OCO-3 solar-induced chlorophyll fluorescence datasets. Earth Syst. Sci. Data 2022, 14, 1513–1529. [Google Scholar] [CrossRef]
- Miller, C.E.; Brown, L.R.; Toth, R.A.; Benner, D.C.; Devi, V.M. Spectroscopic challenges for high accuracy retrievals of atmospheric CO2 and the Orbiting Carbon Observatory (OCO) experiment. Comptes Rendus Phys. 2005, 6, 876–887. [Google Scholar] [CrossRef]
- Balashov, A.A.; Golyak, I.S.; Golyak, I.S.; Morozov, A.N.; Nesteruk, I.N.; Khorokhorin, A.I. Recording Raman Spectra Using a Dynamic Fourier Transform Spectrometer. J. Appl. Spectrosc. 2018, 85, 923–930. [Google Scholar] [CrossRef]
- Vintaykin, I.B.; Golyak, I.S.; Korolev, P.A.; Morozov, A.N.; Tabalin, S.E.; Timashova, L.N. Application of a Static IR Fourier Spectrometer for Recording Chemical Compounds in an Open Atmosphere. Russ. J. Phys. Chem. 2021, 15, 413–419. [Google Scholar] [CrossRef]
- Fufurin, I.L.; Golyak, I.; Bashkin, S.; Knyazev, S.; Timashova, L.; Morozov, A.N. FTIR spectroscopy based on a multipass gas cell and TE cooled HgCdTe sensors for environmental monitoring and defense applications. In Proceedings of the Integrated Optics: Design, Devices, Systems and Applications VI, Online Only, Czech Republic, 19–30 April 2021; Cheben, P., Čtyroký, J., Molina-Fernández, I., Eds.; SPIE: Bellingham, WA, USA, 2021. [Google Scholar] [CrossRef]
- Golyak, I.; Kareva, E.; Fufurin, I.; Anfimov, D.; Scherbakova, A.; Nebritova, A.; Demkin, P.; Morozov, A. Numerical methods of spectral analysis of multicomponent gas mixtures and human exhaled breath. Comput. Opt. 2022, 46, 650–658. [Google Scholar] [CrossRef]
- Morozov, A.; Kochikov, I.; Novgorodskaya, A.; Sologub, A.; Fufurin, I. Statistical estimation of the probability of the correct substance detection in FTIR spectroscopy. Comput. Opt. 2015, 39, 614–621. [Google Scholar] [CrossRef]
- Parker, R.J.; Webb, A.; Boesch, H.; Somkuti, P.; Guillo, R.B.; Noia, A.D.; Kalaitzi, N.; Anand, J.S.; Bergamaschi, P.; Chevallier, F.; et al. A decade of GOSAT Proxy satellite CH4 observations. Earth Syst. Sci. Data 2020, 12, 3383–3412. [Google Scholar] [CrossRef]
- Tenenbaum, S.; Rachkin, D.; Melnikova, V.; Zhivilo, E.; Koretskii, M.; Terehova, S.; Ignateva, A.; Shapovalov, A.; Porseva, S.; Frolov, K.; et al. Onboard systems of Yareelo nanosatellites for solar activity and radiation monitoring. In Proceedings of the XLIV ACADEMIC SPACE CONFERENCE: Dedicated to the Memory of Academician S.P. Korolev and Other Outstanding RUSSIAN Scientists—Pioneers of Space Exploration, Moscow, Russia, 28–31 January 2020; AIP Publishing: College Park, MD, USA, 2021. [Google Scholar] [CrossRef]
- Ignatov, A.I. Selection of Geometric Parameters of an Reaction Wheel System Positioning when Controlling the Angular Motion of a Spacecraft. J. Comput. Syst. Sci. Int. 2022, 61, 83–103. [Google Scholar] [CrossRef]
- Khasanshin, R.K.; Novikov, L.S. Influence of Radiation-Stimulated Discharges on Contamination of Cover Glasses of Solar Batteries of Space Vehicles. Inorg. Mater. Appl. Res. 2022, 13, 326–334. [Google Scholar] [CrossRef]
- Shumeiko, A.I.; Telekh, V.D.; Mayorova, V.I. Development of a novel wave plasma propulsion module with six-directional thrust vectoring capability. Acta Astronaut. 2022, 191, 431–437. [Google Scholar] [CrossRef]
- Telekh, V.D.; Pavlov, A.V.; Kirillov, D.V.; Vorob’ev, E.V.; Turyanskiy, A.G.; Senkov, V.M.; Tsygankov, P.A.; Parada-Becerra, F.F.; Vesnin, V.R.; Skriabin, A.S. Experimental Study of Irradiation of Thin Oxide and Mo/Si Multilayers by High Brightness Broadband VUV/UV Radiation and Their Degradation. Coatings 2022, 12, 290. [Google Scholar] [CrossRef]
- Connor, B.J.; Boesch, H.; Toon, G.; Sen, B.; Miller, C.; Crisp, D. Orbiting Carbon Observatory: Inverse method and prospective error analysis. J. Geophys. Res. Atmos. 2008, 113, 1–14. [Google Scholar] [CrossRef]
- Rothman, L.; Gordon, I.; Babikov, Y.; Barbe, A.; Benner, D.C.; Bernath, P.; Birk, M.; Bizzocchi, L.; Boudon, V.; Brown, L.; et al. The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2013, 130, 4–50. [Google Scholar] [CrossRef] [Green Version]
- Mosecomonitoring Air Quality. 2023. Available online: https://mosecom.mos.ru/ (accessed on 5 May 2023).
- Pankratova, N.; Skorokhod, A.; Moiseenko, K. Air Quality in Moscow Megacity: Basic Level and Extreme Cases. In Proceedings of the EGU General Assembly 2012, Vienna, Austria, 22–27 April 2012; p. 2875. [Google Scholar]
- Aref’ev, V.N.; Kamenogradsky, N.Y.; Kashin, F.V.; Shilkin, A.V. Background component of carbon dioxide concentration in the near-surface air. Izv. Atmos. Ocean. Phys. 2014, 50, 576–582. [Google Scholar] [CrossRef]
- Phillips, F.A.; Naylor, T.; Forehead, H.; Griffith, D.W.T.; Kirkwood, J.; Paton-Walsh, C. Vehicle Ammonia Emissions Measured in An Urban Environment in Sydney, Australia, Using Open Path Fourier Transform Infra-Red Spectroscopy. Atmosphere 2019, 10, 208. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://spectra.iao.ru/ (accessed on 17 July 2023).
Parameter | Unit | Value |
---|---|---|
Lifetime | years | no less than 3 |
Dimensions | mm | (16U CubeSat) |
Weight | kg | 23 |
Orbit parameters | km | from 500 to 600 km, SSO |
Daily power (average orbital) | W | 10 |
Altitude control system | Triaxial: flywheels with unloading by magnetic coils | |
Orientation error (3) on all axes | deg | no more than 0.1 |
Stabilization error (3) on all axes | deg/s | no more than 0.01 |
Propulsion system | electric ablative pulse | |
Payload | FTIR spectrometer |
Parameter | Unit | Value |
---|---|---|
Spectral range: | ||
O | m | 0.75–0.80 |
CO and CH | m | 2.0–2.4 |
Spectral resolution | cm | 2 |
FOV | rad | 10 |
Entrance aperture | mm | 100 |
Power consumption | W | up to 100 |
Dimensions | mm | |
Weight | kg | no more than 10 |
Parameter | Unit | Value |
---|---|---|
Spectral range | m | 1.0–1.7 |
Spectral resolution | cm | 10 |
FOV | deg | 4 |
Entrance aperture | mm | 100 |
IR photodetector material | InGaAs | |
IR active area size | mm | 2 |
IR Photodetector NEP | W/Hz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mayorova, V.; Morozov, A.; Golyak, I.; Golyak, I.; Lazarev, N.; Melnikova, V.; Rachkin, D.; Svirin, V.; Tenenbaum, S.; Vintaykin, I.; et al. Determination of Greenhouse Gas Concentrations from the 16U CubeSat Spacecraft Using Fourier Transform Infrared Spectroscopy. Sensors 2023, 23, 6794. https://doi.org/10.3390/s23156794
Mayorova V, Morozov A, Golyak I, Golyak I, Lazarev N, Melnikova V, Rachkin D, Svirin V, Tenenbaum S, Vintaykin I, et al. Determination of Greenhouse Gas Concentrations from the 16U CubeSat Spacecraft Using Fourier Transform Infrared Spectroscopy. Sensors. 2023; 23(15):6794. https://doi.org/10.3390/s23156794
Chicago/Turabian StyleMayorova, Vera, Andrey Morozov, Iliya Golyak, Igor Golyak, Nikita Lazarev, Valeriia Melnikova, Dmitry Rachkin, Victor Svirin, Stepan Tenenbaum, Ivan Vintaykin, and et al. 2023. "Determination of Greenhouse Gas Concentrations from the 16U CubeSat Spacecraft Using Fourier Transform Infrared Spectroscopy" Sensors 23, no. 15: 6794. https://doi.org/10.3390/s23156794