Dynamic Output Feedback and Neural Network Control of a Non-Holonomic Mobile Robot
Abstract
:1. Introduction
2. Related Work
- Kinematics of mobile robots.
- Non-holonomic mobile robots.
- Dynamic output feedback of mobile robots.
- Neural control of mobile robots.
- Miscellaneous control strategies for mobile robots.
3. Notation
- is the inner product defined in a Hilbert space.
- is the Lie bracket.
- is the Jacobian of a vector field.
- is the 2-norm defined in a Euclidean space.
4. Problem Formulation
5. Control Strategies Definitions
- Neural controller definition.
- Driftless control strategy.
- Non-Driftless control strategy.
5.1. Neural Controller Structure
5.2. Driftless Control of the Mobile Robot
5.3. Non Driftless Control of the Mobile Robot
6. Numerical Experiments
- Minimization of the tracking error.
- Speed of response of the controller.
- Improvement in comparison with other control strategies.
- Driftless control strategy.
- Non-driftless control strategy.
6.1. Numerical Experiment 1
6.2. Numerical Experiment 2
- Neural controller.
- Neural proportional-derivative PD controller.
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, L.; Li, J.; Li, H.; Liu, B. Double-loop tracking control for a wheeled mobile robot with unmodeled dynamics along right angle roads. ISA Trans. 2022, 136, 525–534. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, Y.; Fang, H. Full-state constrained neural control and learning for the nonholonomic wheeled mobile robot with unknown dynamics. ISA Trans. 2022, 125, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.J.; Park, B.S. Quantized feedback control strategy for tracking performance guarantee of nonholonomic mobile robots with uncertain nonlinear dynamics. Appl. Math. Comput. 2021, 407, 126349. [Google Scholar] [CrossRef]
- Trojnacki, M.; Dąbek, P. Studies of dynamics of a lightweight wheeled mobile robot during longitudinal motion on soft ground. Mech. Res. Commun. 2017, 82, 36–42. [Google Scholar] [CrossRef]
- Alipour, K.; Robat, A.B.; Tarvirdizadeh, B. Dynamics modeling and sliding mode control of tractor-trailer wheeled mobile robots subject to wheels slip. Mech. Mach. Theory 2019, 138, 16–37. [Google Scholar] [CrossRef]
- Tzafestas, S.G. 3-Mobile Robot Dynamics. In Introduction to Mobile Robot Control; Tzafestas, S.G., Ed.; Elsevier: Oxford, UK, 2014; pp. 69–99. [Google Scholar]
- Gover, A.R.; Slovák, J. Non-holonomic equations for the normal extremals in geometric control theory. J. Geom. Phys. 2022, 171, 104395. [Google Scholar] [CrossRef]
- Tchoń, K.; Ratajczak, J. Singularities of holonomic and non-holonomic robotic systems: A normal form approach. J. Frankl. Inst. 2021, 358, 7698–7713. [Google Scholar] [CrossRef]
- Abhinav, K.; Mukherjee, I.; Guha, P. Non-holonomic and quasi-integrable deformations of the AB equations. Phys. D Nonlinear Phenom. 2022, 433, 133186. [Google Scholar] [CrossRef]
- Li, Y.; Xin, T.; Qiu, C.; Li, K.; Liu, G.; Li, J.; Wan, Y.; Lu, D. Dynamical-invariant-based holonomic quantum gates: Theory and experiment. Fundam. Res. 2022, 3, 229–236. [Google Scholar] [CrossRef]
- Cenerini, J.; Mehrez, M.W.; Woo Han, J.; Jeon, S.; Melek, W. Model Predictive Path Following Control without terminal constraints for holonomic mobile robots. Control Eng. Pract. 2023, 132, 105406. [Google Scholar] [CrossRef]
- Chen, X.; Liang, W.; Zhao, H.; Al Mamun, A. Adaptive robust controller using intelligent uncertainty observer for mechanical systems under non-holonomic reference trajectories. ISA Trans. 2022, 122, 79–87. [Google Scholar] [CrossRef]
- LI, S.J.; Responder, W. Describing and Calculating Flat Outputs of Two-input Driftless Control Systems. IFAC Proc. Vol. 2010, 43, 683–688. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, M. Switched Feedback Control for a class of First-order Nonholonomic Driftless Systems. IFAC Proc. Vol. 2008, 41, 4761–4766. [Google Scholar] [CrossRef] [Green Version]
- Zuyev, A.; Grushkovskaya, V. Obstacle Avoidance Problem for Driftless Nonlinear Systems with Oscillating Controls. IFAC-PapersOnLine 2017, 50, 10476–10481. [Google Scholar] [CrossRef]
- Califano, C.; Li, S.; Moog, C.H. Controllability of driftless nonlinear time-delay systems. Syst. Control Lett. 2013, 62, 294–301. [Google Scholar] [CrossRef]
- Altafini, C. Involutive flows and discretization errors for nonlinear driftless control systems. Syst. Control Lett. 2017, 110, 29–37. [Google Scholar] [CrossRef]
- Shim, H.S.; Sung, Y.G. Asymptotic control for wheeled mobile robots with driftless constraints. Robot. Auton. Syst. 2003, 43, 29–37. [Google Scholar] [CrossRef]
- Xie, H.; Zong, G.; Yang, D.; Chen, Y.; Shi, K. Dynamic output feedback L-Infinity control of switched affine systems: An event-triggered mechanism. Nonlinear Anal. Hybrid Syst. 2023, 47, 101278. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, L.; Yu, Z.; Li, H.; Shu, L. Dynamic output feedback control for networked control systems: A sum-based discrete event-triggered approach. IFAC-PapersOnLine 2022, 55, 61–66. [Google Scholar] [CrossRef]
- Xie, Z.; Wang, D.; Wong, P.K.; Li, W.; Zhao, J. Dynamic-output-feedback based interval type-2 fuzzy control for nonlinear active suspension systems with actuator saturation and delay. Inf. Sci. 2022, 607, 1174–1194. [Google Scholar] [CrossRef]
- Bertolin, A.L.; Oliveira, R.C.; Valmorbida, G.; Peres, P.L. Dynamic output-feedback control of continuous-time Lur’e systems using Zames-Falb multipliers by means of an LMI-based algorithm. IFAC-PapersOnLine 2022, 55, 109–114. [Google Scholar] [CrossRef]
- Silva, B.M.; Ishihara, J.Y.; Tognetti, E.S. LMI-based consensus of linear multi-agent systems by reduced-order dynamic output feedback. ISA Trans. 2022, 129, 121–129. [Google Scholar] [CrossRef]
- Chen, W.; Gao, F.; Xu, S.; Li, Y.; Chu, Y. Robust stabilization for uncertain singular Markovian jump systems via dynamic output-feedback control. Syst. Control Lett. 2023, 171, 105433. [Google Scholar] [CrossRef]
- Yao, Q. Fixed-time neural adaptive fault-tolerant control for space manipulator under output constraints. Acta Astronaut. 2023, 203, 483–494. [Google Scholar] [CrossRef]
- Wu, C.; Zhu, G.; Lu, J. Indirect adaptive neural tracking control of USVs under injection and deception attacks. Ocean Eng. 2023, 270, 113641. [Google Scholar] [CrossRef]
- Friese, J.; Brandt, N.; Schulte, A.; Kirches, C.; Tegethoff, W.; Köhler, J. Quasi-optimal control of a solar thermal system via neural networks. Energy AI 2023, 12, 100232. [Google Scholar] [CrossRef]
- Alsaade, F.W.; Yao, Q.; Al-zahrani, M.S.; Alzahrani, A.S.; Jahanshahi, H. Neural-based fixed-time attitude tracking control for space vehicle subject to constrained outputs. Adv. Space Res. 2022, 71, 3588–3599. [Google Scholar] [CrossRef]
- Jahanshahi, H.; Yao, Q.; Ijaz Khan, M.; Moroz, I. Unified neural output-constrained control for space manipulator using tan-type barrier Lyapunov function. Adv. Space Res. 2022, 71, 3712–3722. [Google Scholar] [CrossRef]
- Zhou, G.; Tan, D. Review of nuclear power plant control research: Neural network-based methods. Ann. Nucl. Energy 2023, 181, 109513. [Google Scholar] [CrossRef]
- Huang, J.; Wen, C.; Wang, W.; Jiang, Z.P. Adaptive stabilization and tracking control of a nonholonomic mobile robot with input saturation and disturbance. Syst. Control Lett. 2013, 62, 234–241. [Google Scholar] [CrossRef]
- Alves, J.G.; Lizarralde, F.; Monteiro, J.C. Control Allocation for Wheeled Mobile Robots Subject 500 to Input Saturation. IFAC-PapersOnLine 2020, 53, 3904–3909. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, X.; Fang, Y. Visual tracking of mobile robots with both velocity and acceleration saturation constraints. Mech. Syst. Signal Process. 2021, 150, 107274. [Google Scholar] [CrossRef]
- Martínez, E.A.; Ríos, H.; Mera, M. Robust tracking control design for Unicycle Mobile Robots with input saturation. Control Eng. Pract. 2021, 107, 104676. [Google Scholar] [CrossRef]
- Velasco-Villa, M.; Castro-Linares, R.; Rosales-Hernández, F.; del Muro-Cuéllar, B.; Hernández-Pérez, M. Discrete-time synchronization strategy for input time-delay mobile robots. J. Frankl. Inst. 2013, 350, 2911–2935. [Google Scholar] [CrossRef]
- Koumboulis, F.N.; Kouvakas, N.D. Mobile robots in singular time-delay form—Modeling and control. J. Frankl. Inst. 2016, 353, 160–179. [Google Scholar] [CrossRef]
- Kojima, K.; Oguchi, T.; Alvarez-Aguirre, A.; Nijmeijer, H. Predictor-based Tracking Control of A Mobile Robot with Time-delays. IFAC Proc. Vol. 2010, 43, 167–172. [Google Scholar] [CrossRef]
- Santos, J.; Conceição, A.; Santos, T.; Araújo, H. Remote control of an omnidirectional mobile robot with time-varying delay and noise attenuation. Mechatronics 2018, 52, 7–21. [Google Scholar] [CrossRef]
- Gorelov, V.; Komissarov, A.; Miroshnichenko, A. 8 × 8 Wheeled Vehicle Modeling in a Multibody Dynamics Simulation Software. Procedia Eng. 2015, 129, 300–307. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.; Yuan, X.; Xie, X.; Jiang, J.; Zhang, J. Implementing railway vehicle dynamics simulation in general-purpose multibody simulation software packages. Adv. Eng. Softw. 2019, 131, 153–165. [Google Scholar] [CrossRef]
- Wang, H.; Chen, J.; Feng, Z.; Li, Y.; Deng, C.; Chang, Z. Dynamics analysis of underwater glider based on fluid-multibody coupling model. Ocean Eng. 2023, 278, 114330. [Google Scholar] [CrossRef]
- Gan, J.; Zhou, Z.; Yu, A.; Ellis, D.; Attwood, R.; Chen, W. Co-simulation of multibody dynamics and discrete element method for hydraulic excavators. Powder Technol. 2023, 414, 118001. [Google Scholar] [CrossRef]
- Panahandeh, P.; Alipour, K.; Tarvirdizadeh, B.; Hadi, A. A kinematic Lyapunov-based controller to posture stabilization of wheeled mobile robots. Mech. Syst. Signal Process. 2019, 134, 106319. [Google Scholar] [CrossRef]
- Li, W.; Zhan, Q. Kinematics-based four-state trajectory tracking control of a spherical mobile robot driven by a 2-DOF pendulum. Chin. J. Aeronaut. 2019, 32, 1530–1540. [Google Scholar] [CrossRef]
- LiBretto, M.; Qiu, Y.; Kim, E.; Pluckter, K.; Yuk, N.S.; Ueda, J. Singularity-free solutions for inverse kinematics of degenerate mobile robots. Mech. Mach. Theory 2020, 153, 103988. [Google Scholar] [CrossRef]
- Zhao, L.; Jin, J.; Gong, J. Robust zeroing neural network for fixed-time kinematic control of wheeled mobile robot in noise-polluted environment. Math. Comput. Simul. 2021, 185, 289–307. [Google Scholar] [CrossRef]
- Jilek, T.; Burian, F.; Kriz, V. Kinematic Models for Odometry of a Six-Wheeled Mobile Robot. IFAC-PapersOnLine 2016, 49, 305–310. [Google Scholar] [CrossRef]
- Jiang, H.; Xu, G.; Zeng, W.; Gao, F. Design and kinematic modeling of a passively-actively transformable mobile robot. Mech. Mach. Theory 2019, 142, 103591. [Google Scholar] [CrossRef]
- Hernández-León, P.; Dávila, J.; Salazar, S.; Ping, X. Distance-Based Formation Maneuvering of Non-Holonomic Wheeled Mobile Robot Multi-Agent System. IFAC-PapersOnLine 2020, 53, 5665–5670. [Google Scholar] [CrossRef]
- Wang, Y.; Mai, T.; Mao, J. Adaptive motion/force control strategy for non-holonomic mobile manipulator robot using recurrent fuzzy wavelet neural networks. Eng. Appl. Artif. Intell. 2014, 34, 137–153. [Google Scholar] [CrossRef]
- Hou, R.; Cui, L.; Bu, X.; Yang, J. Distributed formation control for multiple non-holonomic wheeled mobile robots with velocity constraint by using improved data-driven iterative learning. Appl. Math. Comput. 2021, 395, 125829. [Google Scholar] [CrossRef]
- Ma, Y.; Zheng, G.; Perruquetti, W. Real-time Identification of different types of non-holonomic mobile robots. IFAC Proc. Vol. 2013, 46, 791–796. [Google Scholar] [CrossRef]
- Goswami, N.K.; Padhy, P.K. Sliding mode controller design for trajectory tracking of a non-holonomic mobile robot with disturbance. Comput. Electr. Eng. 2018, 72, 307–323. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, Y.; He, X. Cooperative output feedback control of a mobile dual flexible manipulator. J. Frankl. Inst. 2021, 358, 6941–6961. [Google Scholar] [CrossRef]
- Zou, Y.; Deng, C.; Dong, L.; Ding, L.; Lu, M. Distributed output feedback consensus tracking control of multiple nonholonomic mobile robots with only position information of leader. Appl. Math. Comput. 2022, 422, 126962. [Google Scholar] [CrossRef]
- Andreev, A.S.; Peregudova, O.A. On Output Feedback Trajectory Tracking Control of an Omni-Mobile Robot⁎⁎This work was financially supported by the Ministry of Education and Science of Russia under Grant [9.5994.2017/BP] and Russian Foundation for Basic Research under Grant [19-01-00791]. IFAC-PapersOnLine 2019, 52, 37–42. [Google Scholar] [CrossRef]
- Huang, J.; Wen, C.; Wang, W.; Jiang, Z.P. Adaptive output feedback tracking control of a nonholonomic mobile robot. Automatica 2014, 50, 821–831. [Google Scholar] [CrossRef]
- Chen, H.; Chen, Y.; Chen, W.; Yang, F. Output Tracking of Nonholonomic Mobile Robots with a Model-free Fractional-order Visual Feedback. IFAC-PapersOnLine 2016, 49, 736–741. [Google Scholar] [CrossRef]
- Wu, D.; Cheng, Y.; Du, H.; Zhu, W.; Zhu, M. Finite-time output feedback tracking control for a nonholonomic wheeled mobile robot. Aerosp. Sci. Technol. 2018, 78, 574–579. [Google Scholar] [CrossRef]
- Sleaman, W.K.; Hameed, A.A.; Jamil, A. Monocular vision with deep neural networks for autonomous mobile robots navigation. Optik 2023, 272, 170162. [Google Scholar] [CrossRef]
- Chawla, I.; Pathak, P.; Notash, L.; Samantaray, A.; Li, Q.; Sharma, U. Inverse and Forward Kineto-Static Solution of a Large-Scale Cable-Driven Parallel Robot using Neural Networks. Mech. Mach. Theory 2023, 179, 105107. [Google Scholar] [CrossRef]
- Gandarilla, I.; Montoya-Cháirez, J.; Santibáñez, V.; Aguilar-Avelar, C.; Moreno-Valenzuela, J. Trajectory tracking control of a self-balancing robot via adaptive neural networks. Eng. Sci. Technol. Int. J. 2022, 35, 101259. [Google Scholar] [CrossRef]
- He, Y.; Chen, J.; Zhou, X.; Huang, S. In-situ fault diagnosis for the harmonic reducer of industrial robots via multi-scale mixed convolutional neural networks. J. Manuf. Syst. 2023, 66, 233–247. [Google Scholar] [CrossRef]
- Xiao, H.; Chen, C.P.; Lai, G.; Yu, D.; Zhang, Y. Integrated nonholonomic multi-robot consensus tracking formation using neural-network-optimized distributed model predictive control strategy. Neurocomputing 2023, 518, 282–293. [Google Scholar] [CrossRef]
- Wu, Y.; Niu, W.; Kong, L.; Yu, X.; He, W. Fixed-time neural network control of a robotic manipulator with input deadzone. ISA Trans. 2022, 135, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Mai, T.; Tran, H. An adaptive robust backstepping improved control scheme for mobile manipulators robot. ISA Trans. 2023, 137, 446–456. [Google Scholar] [CrossRef]
- Raikwar, S.; Fehrmann, J.; Herlitzius, T. Navigation and control development for a four-wheel-steered mobile orchard robot using model-based design. Comput. Electron. Agric. 2022, 202, 107410. [Google Scholar] [CrossRef]
- Rosenfelder, M.; Ebel, H.; Eberhard, P. Cooperative distributed nonlinear model predictive control of a formation of differentially-driven mobile robots. Robot. Auton. Syst. 2022, 150, 103993. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.; Meng, H.; Li, Z.; Sun, Z. Variable gain based composite trajectory tracking control for 4-wheel skid-steering mobile robots with unknown disturbances. Control Eng. Pract. 2023, 132, 105428. [Google Scholar] [CrossRef]
- Luo, X.; Mu, D.; Wang, Z.; Ning, P.; Hua, C. Adaptive full-state constrained tracking control for mobile robotic system with unknown dead-zone input. Neurocomputing 2023, 524, 31–42. [Google Scholar] [CrossRef]
- Spong, M.W.; Hutchinson, S.; Vidyasagar, M. Robot Modeling and Control; John Wiley and Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardona, M.; Serrano, F.E. Dynamic Output Feedback and Neural Network Control of a Non-Holonomic Mobile Robot. Sensors 2023, 23, 6875. https://doi.org/10.3390/s23156875
Cardona M, Serrano FE. Dynamic Output Feedback and Neural Network Control of a Non-Holonomic Mobile Robot. Sensors. 2023; 23(15):6875. https://doi.org/10.3390/s23156875
Chicago/Turabian StyleCardona, Manuel, and Fernando E. Serrano. 2023. "Dynamic Output Feedback and Neural Network Control of a Non-Holonomic Mobile Robot" Sensors 23, no. 15: 6875. https://doi.org/10.3390/s23156875
APA StyleCardona, M., & Serrano, F. E. (2023). Dynamic Output Feedback and Neural Network Control of a Non-Holonomic Mobile Robot. Sensors, 23(15), 6875. https://doi.org/10.3390/s23156875