A Multi-Layer Feature Fusion Method for Few-Shot Image Classification
Abstract
:1. Introduction
- A few-shot model based on multi-layer feature fusion to improve and combine the feature extraction process.
- The combined use of relative entropy to better distinguish the rich embeddings provided earlier in the fusion process.
- Testing and comparison, using a proposed maize crop insect (pest and beneficial) dataset, against consolidated backbones showing better performance, with less number of parameters, of the proposed model.
2. Materials and Methods
2.1. A Small Maize Crop Insect Dataset: Pests and Beneficial Insects
2.2. Few-Shot Learning
2.3. The Proposed Method
2.3.1. The Proposed Feature Extractor
2.3.2. The Proposed Similarity Measurement
2.3.3. Implementation Details
3. Experimental Setup
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Yao, Q.; Kwok, J.T.; Ni, L.M. Generalizing from a few examples: A survey on few-shot learning. ACM Comput. Surv. (CSUR) 2020, 53, 1–34. [Google Scholar] [CrossRef]
- Li, Y.; Yang, J. Meta-learning baselines and database for few-shot classification in agriculture. Comput. Electron. Agric. 2021, 182, 106055. [Google Scholar] [CrossRef]
- Jamal, M.A.; Qi, G.J. Task agnostic meta-learning for few-shot learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 11719–11727. [Google Scholar]
- Sun, Q.; Liu, Y.; Chua, T.S.; Schiele, B. Meta-transfer learning for few-shot learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 403–412. [Google Scholar]
- Yang, J.; Guo, X.; Li, Y.; Marinello, F.; Ercisli, S.; Zhang, Z. A survey of few-shot learning in smart agriculture: Developments, applications, and challenges. Plant Methods 2022, 18, 28. [Google Scholar] [CrossRef] [PubMed]
- Snell, J.; Swersky, K.; Zemel, R.S. Prototypical networks for few-shot learning. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA USA, 4–9 December 2017; pp. 4077–4087. [Google Scholar]
- Sung, F.; Yang, Y.; Zhang, L.; Xiang, T.; Torr, P.H.S.; Hospedales, T.M. Learning to compare: Relation network for few-shot learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 1199–1208. [Google Scholar]
- Vinyals, O.; Blundell, C.; Lillicrap, T.; Kavukcuoglu, K.; Wierstra, D. Matching networks for one shot learning. Adv. Neural Inf. Process. Syst. 2016, 29, 3630–3638. [Google Scholar]
- Ji, Z.; Chai, X.; Yu, Y.; Pang, Y.; Zhang, Z. Improved prototypical networks for few-shot learning. Pattern Recognit. Lett. 2020, 140, 81–87. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, X.; Li, M.; Li, W. Small-sample learning with salient-region detection and center neighbor loss for insect recognition in real-world complex scenarios. Comput. Electron. Agric. 2021, 185, 106122. [Google Scholar] [CrossRef]
- Ye, H.J.; Hu, H.; Zhan, D.C.; Sha, F. Few-shot learning via embedding adaptation with set-to-set functions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 8808–8817. [Google Scholar]
- Li, Y.; Yang, J. Few-shot cotton pest recognition and terminal realization. Comput. Electron. Agric. 2020, 169, 105240. [Google Scholar] [CrossRef]
- Koch, G.; Zemel, R.; Salakhutdinov, R. Siamese Neural Networks for One-shot Image Recognition. ICML Deep. Learn. Workshop 2015, 2, 1–8. [Google Scholar]
- Yang, S.; Liu, F.; Dong, N.; Wu, J. Comparative Analysis on Classical Meta-Metric Models for Few-Shot Learning. IEEE Access 2020, 8, 127065–127073. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Z.; Xu, H.; Darrell, T.; Wang, X. Meta-baseline: Exploring simple meta-learning for few-shot learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 9062–9071. [Google Scholar]
- Bateni, P.; Goyal, R.; Masrani, V.; Wood, F.; Sigal, L. Improved few-shot visual classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 14493–14502. [Google Scholar]
- Gomes, J.C.; Borges, D.L. Insect Pest Image Recognition: A Few-Shot Machine Learning Approach including Maturity Stages Classification. Agronomy 2022, 12, 1733. [Google Scholar] [CrossRef]
- Li, Y.; Chao, X. Semi-supervised few-shot learning approach for plant diseases recognition. Plant Methods 2021, 17, 68. [Google Scholar] [CrossRef]
- Argüeso, D.; Picon, A.; Irusta, U.; Medela, A.; San-Emeterio, M.G.; Bereciartua, A.; Alvarez-Gila, A. Few-Shot Learning approach for plant disease classification using images taken in the field. Comput. Electron. Agric. 2020, 175, 105542. [Google Scholar] [CrossRef]
- Nuthalapati, S.V.; Tunga, A. Multi-Domain Few-Shot Learning and Dataset for Agricultural Applications. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 1399–1408. [Google Scholar]
- Li, Y.; Chao, X. ANN-based continual classification in agriculture. Agriculture 2020, 10, 178. [Google Scholar] [CrossRef]
- Ngugi, L.C.; Abelwahab, M.; Abo-Zahhad, M. Recent advances in image processing techniques for automated leaf pest and disease recognition—A review. Inf. Process. Agric. 2021, 8, 27–51. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Dang, L.M.; Sadeghi-Niaraki, A.; Moon, H. Crop pest recognition in natural scenes using convolutional neural networks. Comput. Electron. Agric. 2020, 169, 105174. [Google Scholar] [CrossRef]
- Kasinathan, T.; Singaraju, D.; Uyyala, S.R. Insect classification and detection in field crops using modern machine learning techniques. Inf. Process. Agric. 2021, 8, 446–457. [Google Scholar] [CrossRef]
- Kusrini, K.; Suputa, S.; Setyanto, A.; Agastya, I.M.A.; Priantoro, H.; Chandramouli, K.; Izquierdo, E. Data augmentation for automated pest classification in Mango farms. Comput. Electron. Agric. 2020, 179, 105842. [Google Scholar] [CrossRef]
- Thenmozhi, K.; Reddy, U.S. Crop pest classification based on deep convolutional neural network and transfer learning. Comput. Electron. Agric. 2019, 164, 104906. [Google Scholar] [CrossRef]
- Li, W.; Zheng, T.; Yang, Z.; Li, M.; Sun, C.; Yang, X. Classification and detection of insects from field images using deep learning for smart pest management: A systematic review. Ecol. Inform. 2021, 66, 101460. [Google Scholar] [CrossRef]
- Sheema, D.; Ramesh, K.; Renjith, P.; Lakshna, A. Comparative Study of Major Algorithms for Pest Detection in Maize Crop. In Proceedings of the 2021 International Conference on Intelligent Technologies (CONIT), Hubli, India, 25–27 June 2021; pp. 1–7. [Google Scholar]
- Ortega, A. Insect Pests of Maize: A Guide for Field Identification; CIMMYT: Mexico City, Mexico, 1987. [Google Scholar]
- Hoffer, E.; Ailon, N. Deep metric learning using triplet network. In Proceedings of the International Workshop on Similarity-Based Pattern Recognition, Copenhagen, Denmark, 12–14 October 2015; pp. 84–92. [Google Scholar]
- Fu, X.; Zhao, Y.; Wei, Y.; Zhao, Y.; Wei, S. Rich features embedding for cross-modal retrieval: A simple baseline. IEEE Trans. Multimed. 2019, 22, 2354–2365. [Google Scholar] [CrossRef]
- Amin, S.U.; Alsulaiman, M.; Muhammad, G.; Bencherif, M.A.; Hossain, M.S. Multilevel weighted feature fusion using convolutional neural networks for EEG motor imagery classification. IEEE Access 2019, 7, 18940–18950. [Google Scholar] [CrossRef]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Kim, J.; Chi, M. SAFFNet: Self-attention-based feature fusion network for remote sensing few-shot scene classification. Remote Sens. 2021, 13, 2532. [Google Scholar] [CrossRef]
- Ding, Y.; Tian, X.; Yin, L.; Chen, X.; Liu, S.; Yang, B.; Zheng, W. Multi-scale relation network for few-shot learning based on meta-learning. In Proceedings of the International Conference on Computer Vision Systems, Thessaloniki, Greece, 23–25 September 2019; pp. 343–352. [Google Scholar]
- Jiang, W.; Huang, K.; Geng, J.; Deng, X. Multi-scale metric learning for few-shot learning. IEEE Trans. Circuits Syst. Video Technol. 2020, 31, 1091–1102. [Google Scholar] [CrossRef]
- Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 818–833. [Google Scholar]
- Li, Y.; Nie, J.; Chao, X. Do we really need deep CNN for plant diseases identification? Comput. Electron. Agric. 2020, 178, 105803. [Google Scholar] [CrossRef]
- Banerjee, A.; Merugu, S.; Dhillon, I.S.; Ghosh, J.; Lafferty, J. Clustering with Bregman divergences. J. Mach. Learn. Res. 2005, 6, 1705–1749. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the ICLR, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
Source Set | Target Set | ||
---|---|---|---|
Label | Insect Name | Label | Insect Name |
1 | Dalbulus maidis | 15 | Astylus variegatus |
2 | Deois flavopicta | 16 | Delia spp. |
3 | Diatraea saccharalis | 17 | Diabrotica speciosa |
4 | Elasmopalpus lignosellus | 18 | Diloboderus abderus |
5 | Helicoverpa zea | 19 | Euxesta spp. |
6 | Leptoglossus zonatus | 20 | Frankliniella williamsi |
7 | Mocis latipes | 21 | Rhopalosiphum maidis |
8 | Peregrinus maidis | 22 | Scaptocoris castanea |
9 | Spodoptera frugiperda | 23 | Campoletis flavicincta |
10 | Cycloneda sanguinea | 24 | Ceraeochrysa sp. |
11 | Geocoris sp. | 25 | Doru luteipes |
12 | Hippodamia convergens | 26 | Lysiphelus testaceipes |
13 | Orius sp. | 27 | Telenomus remus |
14 | Podisus sp. | 28 | Trichogramma pretiosum |
Backbone | Parameters () |
---|---|
VGG16 | 138,365.99 |
Resnet50 | 25,557.03 |
Mobilenetv2 | 3504.87 |
f branch of MLF | 1.92 |
f branch of MLF | 38.98 |
f branch of MLF | 76.03 |
f branch of MLF | 113.09 |
Total of MLF | 230.02 |
Resource | 1-Shot | 5-Shot |
---|---|---|
backbone+ ED | 0.6601 | 0.7816 |
backbone + RE | 0.6622 | 0.7882 |
MLF + ED | 0.69 | 0.8082 |
MLF + RE | 0.6984 | 0.8014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, J.C.; Borges, L.d.A.B.; Borges, D.L. A Multi-Layer Feature Fusion Method for Few-Shot Image Classification. Sensors 2023, 23, 6880. https://doi.org/10.3390/s23156880
Gomes JC, Borges LdAB, Borges DL. A Multi-Layer Feature Fusion Method for Few-Shot Image Classification. Sensors. 2023; 23(15):6880. https://doi.org/10.3390/s23156880
Chicago/Turabian StyleGomes, Jacó C., Lurdineide de A. B. Borges, and Díbio L. Borges. 2023. "A Multi-Layer Feature Fusion Method for Few-Shot Image Classification" Sensors 23, no. 15: 6880. https://doi.org/10.3390/s23156880
APA StyleGomes, J. C., Borges, L. d. A. B., & Borges, D. L. (2023). A Multi-Layer Feature Fusion Method for Few-Shot Image Classification. Sensors, 23(15), 6880. https://doi.org/10.3390/s23156880