Investigating Machine Learning and Control Theory Approaches for Process Fault Detection: A Comparative Study of KPCA and the Observer-Based Method
Abstract
:1. Introduction
2. Kernel Principal Component Analysis (KPCA)
2.1. Number of Principal Components
2.2. Fault Detection
3. The Observer Method
- System Model: The observer relies on a mathematical model that describes the dynamics of the system being observed. This model can be derived from first principles or obtained through system identification techniques.
- Measurement Equation: The observer uses a measurement equation that relates the system’s state variables to the available measurements. This equation can be derived from the system model and typically includes sensor equations and/or sensor noise models.
- State Estimation: The core of the observer is the state estimation algorithm, which updates and estimates the system’s state variables based on the available measurements. Various estimation techniques can be used, such as Kalman filters, extended Kalman filters, particle filters, or model-based observers like the sliding mode observer.
- Fault Detection: In fault diagnosis, the observer is also responsible for detecting the occurrence of faults. This can be done by comparing the estimated state variables with expected values or by analyzing the residuals between the measurements and the estimated values.
- Fault Parameter Estimation: If faults are detected, the observer may also estimate the fault parameters, such as fault magnitudes, locations, or characteristics. This is typically done by incorporating fault models into the observer and updating the estimated parameters based on the available measurements and fault detection results.
- Adaptation and Learning: Depending on the observer’s design, it may incorporate adaptation or learning mechanisms to improve its performance over time. These mechanisms allow the observer to adapt to changes in system dynamics or fault characteristics, or to learn from historical data to enhance its fault diagnosis capabilities.
Fault Detection Observer
4. Applications
4.1. Overview of Three-Tank System Applications
4.2. Process Description of a Hydraulic System with Three Tanks
4.3. Simulation Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lima, A.; Zen, H.; Nankaku, Y.; Tokuda, K.; Kitamura, T.; Resende, F.G. Applying Sparse KPCA for Feature Extraction in Speech Recognition. IEICE Trans. Inf. Syst. 2005, 88, 401–409. [Google Scholar] [CrossRef] [Green Version]
- Aronszajn, N. Theory of Reproducing Kernels. Trans. Am. Math. Soc. 1950, 68, 337–404. [Google Scholar] [CrossRef]
- Baklouti, R.; Mansouri, M.; Nounou, M.; Nounou, H.; Hamida, A.B. Iterated Robust Kernel Fuzzy Principal Component Analysis and Application to Fault Detection. J. Comput. Sci. 2016, 15, 34–49. [Google Scholar] [CrossRef]
- Ratsch, G. Input Space versus Feature Space in Kernel-Based Methods. IEEE Trans. Neural Netw. 1999, 10, 1000–1017. [Google Scholar]
- Botre, C.; Mansouri, M.; Nounou, M.; Nounou, H.; Karim, M.N. Kernel PLS-Based GLRT Method for Fault Detection of Chemical Processes. J. Loss Prev. Process Ind. 2016, 43, 212–224. [Google Scholar] [CrossRef]
- Chetouani, Y. A Neural Network Approach for the Real-Time Detection of Faults. Stoch. Environ. Res. Risk Assess. 2008, 22, 339–349. [Google Scholar] [CrossRef]
- Cho, J.-H.; Lee, J.-M.; Choi, S.W.; Lee, D.; Lee, I.-B. Fault Identification for Process Monitoring Using Kernel Principal Component Analysis. Chem. Eng. Sci. 2005, 60, 279–288. [Google Scholar] [CrossRef]
- Choi, S.W.; Lee, C.; Lee, J.-M.; Park, J.H.; Lee, I.-B. Fault Detection and Identification of Nonlinear Processes Based on Kernel PCA. Chemom. Intell. Lab. Syst. 2005, 75, 55–67. [Google Scholar] [CrossRef]
- Doan, P.T.; Bui, T.L.; Kim, H.K.; Kim, S.B. Sliding-Mode Observer Design for Sensorless Vector Control of AC Induction Motor. In Proceedings of the 2013 9th Asian Control Conference (ASCC), Istanbul, Turkey, 23–26 June 2013; pp. 1–5. [Google Scholar]
- Ruderman, M.; Iwasaki, M. Sensorless Control of Motor Velocity in Two-Mass Actuator Systems with Load Sensing Using Extended State Observer. In Proceedings of the 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Besacon, France, 8–11 July 2014; pp. 360–365. [Google Scholar]
- Heredia, G.; Ollero, A. Sensor Fault Detection in Small Autonomous Helicopters Using Observer/Kalman Filter Identification. In Proceedings of the 2009 IEEE International Conference on Mechatronics, Malaga, Spain, 14–17 April 2009; pp. 1–6. [Google Scholar]
- Isermann, R. Fault-Diagnosis Systems. An Introduction from Fault Detection to Fault Tolerance; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar] [CrossRef]
- Li, X.-J.; Yang, G.-H. Dynamic Observer-Based Robust Control and Fault Detection for Linear Systems. IET Control Theory Appl. 2012, 6, 2657–2666. [Google Scholar] [CrossRef]
- Kumar, V.E.; Jerome, J. Sensor Fault Detection in DC Servo System Using Unknown Input Observer with Structured Residual Generation. J. Electr. Eng. 2013, 13, 6. [Google Scholar]
- Yi, J.; Huang, Z.; Liu, W.; Yang, Y.; Zhang, X.; Liu, J. Actuator Fault Detection Based on Robust Adaptive Observer for CCBII Braking System. In Proceedings of the 26th Chinese Control and Decision Conference (2014 CCDC), Changsha, China, 31 May–2 June 2014; pp. 2841–2846. [Google Scholar]
- Khalid, H.M.; Khoukhi, A.; Al-Sunni, F.M. Fault Detection and Classification Using Kalman Filter and Genetic Neuro-Fuzzy Systems. In Proceedings of the 2011 Annual Meeting of the North American Fuzzy Information Processing Society, El Paso, TX, USA, 18–20 March 2011; pp. 1–6. [Google Scholar]
- Yang, S.K.; Liu, T.S. State Estimation for Predictive Maintenance Using Kalman Filter. Reliab. Eng. Syst. Saf. 1999, 66, 29–39. [Google Scholar] [CrossRef]
- Alkaya, A.; Eker, İ. Luenberger Observer-Based Sensor Fault Detection: Online Application to DC Motor. Turk. J. Electr. Eng. Comput. Sci. 2014, 22, 363–370. [Google Scholar] [CrossRef]
- Tarantino, R.; Szigeti, F.; Colina-Morles, E. Generalized Luenberger Observer-Based Fault-Detection Filter Design: An Industrial Application. Control Eng. Pract. 2000, 8, 665–671. [Google Scholar] [CrossRef]
- Schölkopf, B.; Smola, A.; Müller, K.-R. Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Comput. 1998, 10, 1299–1319. [Google Scholar] [CrossRef] [Green Version]
- Dong, D.; McAvoy, T.J. Nonlinear Principal Component Analysis—Based on Principal Curves and Neural Networks. Comput. Chem. Eng. 1996, 20, 65–78. [Google Scholar] [CrossRef]
- Fazai, R.; Taouali, O.; Harkat, M.F.; Bouguila, N. A New Fault Detection Method for Nonlinear Process Monitoring. Int. J. Adv. Manuf. Technol. 2016, 87, 3425–3436. [Google Scholar] [CrossRef]
- Harkat, M.-F.; Mourot, G.; Ragot, J. An Improved PCA Scheme for Sensor FDI: Application to an Air Quality Monitoring Network. J. Process Control 2006, 16, 625–634. [Google Scholar] [CrossRef]
- Ge, Z.; Yang, C.; Song, Z. Improved Kernel PCA-Based Monitoring Approach for Nonlinear Processes. Chem. Eng. Sci. 2009, 64, 2245–2255. [Google Scholar] [CrossRef]
- Vapnik, V. The Support Vector Method of Function Estimation. In Nonlinear Modeling: Advanced Black-Box Techniques; Springer: Berlin/Heidelberg, Germany, 1998; pp. 55–85. [Google Scholar]
- Harkat, M.-F.; Mourot, G.; Ragot, J. Multiple Sensor Fault Detection and Isolation of an Air Quality Monitoring Network Using RBF-NLPCA Model. IFAC Proc. Vol. 2009, 42, 828–833. [Google Scholar] [CrossRef]
- Jaffel, I.; Taouali, O.; Harkat, M.F.; Messaoud, H. Kernel Principal Component Analysis with Reduced Complexity for Nonlinear Dynamic Process Monitoring. Int. J. Adv. Manuf. Technol. 2017, 88, 3265–3279. [Google Scholar] [CrossRef]
- Jaffel, I.; Taouali, O.; Harkat, M.F.; Messaoud, H. Moving Window KPCA with Reduced Complexity for Nonlinear Dynamic Process Monitoring. ISA Trans. 2016, 64, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Kallas, M.; Mourot, G.; Maquin, D.; Ragot, J. Diagnosis of Nonlinear Systems Using Kernel Principal Component Analysis. Proc. J. Phys. Conf. Ser. 2014, 570, 072004. [Google Scholar] [CrossRef]
- Kazor, K.; Holloway, R.W.; Cath, T.Y.; Hering, A.S. Comparison of Linear and Nonlinear Dimension Reduction Techniques for Automated Process Monitoring of a Decentralized Wastewater Treatment Facility. Stoch. Environ. Res. Risk Assess. 2016, 30, 1527–1544. [Google Scholar] [CrossRef]
- Kim, K.I.; Jung, K.; Kim, H.J. Face Recognition Using Kernel Principal Component Analysis. IEEE Signal Process. Lett. 2002, 9, 40–42. [Google Scholar]
- Lahdhiri, H.; Taouali, O.; Elaissi, I.; Jaffel, I.; Harakat, M.F.; Messaoud, H. A New Fault Detection Index Based on Mahalanobis Distance and Kernel Method. Int. J. Adv. Manuf. Technol. 2017, 91, 2799–2809. [Google Scholar] [CrossRef]
- Lefebvre, D.; Basile, F. An Approach Based on Timed Petri Nets and Tree Encoding to Implement Search Algorithms for a Class of Scheduling Problems. Inf. Sci. 2021, 559, 314–335. [Google Scholar] [CrossRef]
- Lajmi, F.; Talmoudi, A.J.; Dhouibi, H. Fault Diagnosis of Uncertain Systems Based on Interval Fuzzy PETRI Net. Stud. Inform. Control 2017, 26, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Fatma, L.; Ghabi, J.; Dhouibi, H. Applying Interval Fuzzy Petri Net to Failure Analysis. Int. J. Serv. Sci. Manag. Eng. Technol. 2020, 11, 14–30. [Google Scholar]
- Lee, J.-M.; Yoo, C.; Lee, I.-B. Statistical Process Monitoring with Independent Component Analysis. J. Process Control 2004, 14, 467–485. [Google Scholar] [CrossRef]
- Lee, J.-M.; Yoo, C.; Choi, S.W.; Vanrolleghem, P.A.; Lee, I.-B. Nonlinear Process Monitoring Using Kernel Principal Component Analysis. Chem. Eng. Sci. 2004, 59, 223–234. [Google Scholar] [CrossRef]
- Li, G.; Qin, S.J.; Zhou, D. Geometric Properties of Partial Least Squares for Process Monitoring. Automatica 2010, 46, 204–210. [Google Scholar] [CrossRef]
- Li, H.; Zhang, D. Stochastic Representation and Dimension Reduction for Non-Gaussian Random Fields: Review and Reflection. Stoch. Environ. Res. Risk Assess. 2013, 27, 1621–1635. [Google Scholar] [CrossRef]
- Liu, X.; Kruger, U.; Littler, T.; Xie, L.; Wang, S. Moving Window Kernel PCA for Adaptive Monitoring of Nonlinear Processes. Chemom. Intell. Lab. Syst. 2009, 96, 132–143. [Google Scholar] [CrossRef]
- Aizerman, A. Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning. Autom. Remote Control 1964, 25, 821–837. [Google Scholar]
- Mansouri, M.; Nounou, M.; Nounou, H.; Karim, N. Kernel PCA-Based GLRT for Nonlinear Fault Detection of Chemical Processes. J. Loss Prev. Process Ind. 2016, 40, 334–347. [Google Scholar] [CrossRef]
- Mercer, J. XVI. Functions of Positive and Negative Type, and Their Connection the Theory of Integral Equations. Philos. Trans. R. Soc. Lond. Ser. A Contain. Pap. A Math. Phys. Character 1909, 209, 415–446. [Google Scholar]
- Mika, S.; Schölkopf, B.; Smola, A.; Müller, K.-R.; Scholz, M.; Rätsch, G. Kernel PCA and De-Noising in Feature Spaces. In Proceedings of the Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 1998; Volume 11. [Google Scholar]
- Nomikos, P.; MacGregor, J.F. Multivariate SPC Charts for Monitoring Batch Processes. Technometrics 1995, 37, 41–59. [Google Scholar] [CrossRef]
- Teston, A.; Piccinini Scolaro, T.; Kuntz Maykot, J.; Ghisi, E. Comprehensive Environmental Assessment of Rainwater Harvesting Systems: A Literature Review. Water 2022, 14, 2716. [Google Scholar] [CrossRef]
- Al-Jayyousi, O.R. Greywater Reuse: Towards Sustainable Water Management. Desalination 2003, 156, 181–192. [Google Scholar] [CrossRef]
- Bahta, S.T. Design and Analyzing of an Off-Grid Hybrid Renewable Energy System to Supply Electricity for Rural Areas: Case Study: Atsbi District, North Ethiopia. Master’s Thesis, KTH School of Industrial Engineering and Management, Stockholm, Sweden, 2013. [Google Scholar]
- Cheremisinoff, P.N. Handbook of Water and Wastewater Treatment Technology; Routledge: London, UK, 2019. [Google Scholar]
- Bojan-Dragos, C.-A.; Szedlak-Stinean, A.-I.; Precup, R.-E.; Gurgui, L.; Hedrea, E.-L.; Mituletu, I.-C. Control Solutions for Vertical Three-Tank Systems. In Proceedings of the 2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI), Timisoara, Romania, 17–19 May 2018; pp. 000593–000598. [Google Scholar]
- Peters, M.S.; Timmerhaus, K.D.; West, R.E. Plant Design and Economics for Chemical Engineers; McGraw-Hill: New York, NY, USA, 2003; Volume 4. [Google Scholar]
- Jolliffe, I. Principal Component Analysis. In Encyclopedia of Statistics in Behavioral Science; Wiley Online Library: New York, NY, USA, 2005. [Google Scholar]
- Sheriff, M.Z.; Mansouri, M.; Karim, M.N.; Nounou, H.; Nounou, M. Fault Detection Using Multiscale PCA-Based Moving Window GLRT. J. Process Control 2017, 54, 47–64. [Google Scholar] [CrossRef]
- Taouali, O.; Elaissi, I.; Messaoud, H. Dimensionality Reduction of RKHS Model Parameters. ISA Trans. 2015, 57, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Tharrault, Y.; Mourot, G.; Ragot, J.; Maquin, D. Fault Detection and Isolation with Robust Principal Component Analysis. Int. J. Appl. Math. Comput. Sci. 2008, 18, 429–442. [Google Scholar] [CrossRef] [Green Version]
- Vapnik, V.N. An Overview of Statistical Learning Theory. IEEE Trans. Neural Netw. 1999, 10, 988–999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Li, S.; Teng, Y. Dynamic Processes Monitoring Using Recursive Kernel Principal Component Analysis. Chem. Eng. Sci. 2012, 72, 78–86. [Google Scholar] [CrossRef]
- Zhao, C.; Ma, J.; Wei, Y.; Long, Y.; Ou, H.; Bao, J.; Yin, J.; Liu, W.; Zhu, N.; Lu, X. Active Mass Transfer for Printable Electrochemical Sensors with Ultrasonic Stimuli. Mater. Today Commun. 2023, 34, 105382. [Google Scholar] [CrossRef]
- Magni, J.-F.; Mouyon, P. A Generalized Approach to Observers for Fault Diagnosis. In Proceedings of the 30th IEEE Conference on Decision and Control, Brighton, UK, 11–13 December 1991; pp. 2236–2241. [Google Scholar] [CrossRef]
- Zhong, M.; Yang, Y.; Sun, S.; Zhou, Y.; Postolache, O.; Ge, Y. Priority-Based Speed Control Strategy for Automated Guided Vehicle Path Planning in Automated Container Terminals. Trans. Inst. Meas. Control 2020, 42, 014233122094011. [Google Scholar] [CrossRef]
- Wu, P.; Xiao, F.; Sha, C.; Huang, H.; Sun, L. Trajectory Optimization for UAVs’ Efficient Charging in Wireless Rechargeable Sensor Networks. IEEE Trans. Veh. Technol. 2020, 69, 4207–4220. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lajmi, F.; Mhamdi, L.; Abdelbaki, W.; Dhouibi, H.; Younes, K. Investigating Machine Learning and Control Theory Approaches for Process Fault Detection: A Comparative Study of KPCA and the Observer-Based Method. Sensors 2023, 23, 6899. https://doi.org/10.3390/s23156899
Lajmi F, Mhamdi L, Abdelbaki W, Dhouibi H, Younes K. Investigating Machine Learning and Control Theory Approaches for Process Fault Detection: A Comparative Study of KPCA and the Observer-Based Method. Sensors. 2023; 23(15):6899. https://doi.org/10.3390/s23156899
Chicago/Turabian StyleLajmi, Fatma, Lotfi Mhamdi, Wiem Abdelbaki, Hedi Dhouibi, and Khaled Younes. 2023. "Investigating Machine Learning and Control Theory Approaches for Process Fault Detection: A Comparative Study of KPCA and the Observer-Based Method" Sensors 23, no. 15: 6899. https://doi.org/10.3390/s23156899
APA StyleLajmi, F., Mhamdi, L., Abdelbaki, W., Dhouibi, H., & Younes, K. (2023). Investigating Machine Learning and Control Theory Approaches for Process Fault Detection: A Comparative Study of KPCA and the Observer-Based Method. Sensors, 23(15), 6899. https://doi.org/10.3390/s23156899