Ionospheric Weather at Two Starlink Launches during Two-Phase Geomagnetic Storms
Abstract
:1. Introduction
2. Data Processing Results
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pultarova, T. Wild Solar Weather is Causing Satellites to Plummet from Orbit. Space 2022. Available online: https://www.space.com/satellites-falling-off-sky-solar-weather (accessed on 31 July 2023).
- Hapgood, M.; Liu, H.; Lugaz, N. SpaceX—Sailing close to the space weather? Space Weather 2022, 20, e2022SW003074. [Google Scholar] [CrossRef]
- Kataoka, R.; Shiota, D.; Fujiwara, H.; Jin, H.; Tao, C.; Shinagawa, H.; Miyoshi, Y. Unexpected space weather causing the reentry of 38 Starlink satellites in February 2022. J. Space Weather Space Clim. 2022, 12, 41. [Google Scholar] [CrossRef]
- Dang, T.; Li, X.; Luo, B.; Li, R.; Zhang, B.; Pham, K.; Ren, D.; Chen, X.; Lei, J.; Wang, Y. Unveiling the space weather during the Starlink satellites destruction event on 4 February 2022. Space Weather 2022, 20, e2022SW003152. [Google Scholar] [CrossRef]
- Fang, T.; Kubaryk, A.; Goldstein, D.; Li, Z.; Fuller-Rowell, T.; Millward, G.; Singer, H.J.; Steenburgh, R.; Westerman, S.; Babcock, E. Space weather environment during the SpaceX Starlink satellite loss in February 2022. Space Weather 2022, 20, e2022SW003193. [Google Scholar] [CrossRef]
- Tsurutani, B.T.; Green, J.L.; Hajra, R. The possible cause of the 40 SpaceX Starlink satellite losses in February 2022: Prompt penetrating electric fields and the dayside equatorial and midlatitude ionospheric convective uplift. arXiv 2022, arXiv:2210.07902. [Google Scholar] [CrossRef]
- Zhang, Y.; Paxton, L.J.; Schaefer, R.; Swartz, W.H. Thermospheric conditions associated with the loss of 40 Starlink satellites. Space Weather 2022, 20, e2022SW003168. [Google Scholar] [CrossRef]
- Lockwood, M.; Owens, M.J.; Barnard, L.A. Universal time variations in the magnetosphere and the effect of CME arrival time: Analysis of the February 2022 event that led to the loss of Starlink satellites. J. Geophys. Res. Space Phys. 2023, 128, e2022JA031177. [Google Scholar] [CrossRef]
- Hernandez-Pajares, M.; Juan, J.M.; Sanz, J.; Orus, R.; Garcia-Rigo, A.; Feltens, J.; Komjathy, A.; Schaer, S.C.; Krankowski, A. The IGS VTEC maps: A reliable source of ionospheric information since 1998. J. Geod. 2009, 83, 263–275. [Google Scholar] [CrossRef]
- Mannucci, A.J.; Wilson, B.D.; Yuan, D.N.; Ho, C.M.; Lindqwister, U.J.; Runge, T.F. A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci. 1998, 33, 565–582. [Google Scholar] [CrossRef]
- Gulyaeva, T.L.; Arikan, F.; Hernandez-Pajares, M.; Stanislawska, I. GIM-TEC adaptive ionospheric weather assessment and forecast system. J. Atmosph. Solar-Terr. Phys. 2013, 102, 329–340. [Google Scholar] [CrossRef] [Green Version]
- Schaer, S.; Beutler, G.; Rothacher, M.; Springer, T.A. Daily global ionosphere maps based on GPS carrier phase data routinely produced by the CODE Analysis Center. In Proceedings of the IGS AC Workshop, Silver Spring, MD, USA, 19–21 March 1996; pp. 181–192. [Google Scholar]
- Xia, G.; Zhang, F.; Wang, C.; Zhou, C. ED-ConvLSTM: A novel global ionospheric total electron content medium-term forecast model. Space Weather 2022, 20, e2021SW002959. [Google Scholar] [CrossRef]
- Shi, S.; Zhang, K.; Wu, S.; Shi, J.; Hu, A.; Wu, H.; Li, Y. An investigation of ionospheric TEC prediction maps over China using bidirectional long short-term memory method. Space Weather 2022, 20, e2022SW003103. [Google Scholar] [CrossRef]
- Monte-Moreno, E.; Yang, H.; Hernández-Pajares, M. Forecast of the Global TEC by Nearest Neighbour Technique. Remote Sens. 2022, 14, 1361. [Google Scholar] [CrossRef]
- García-Rigo, A.; Monte, E.; Hernández-Pajares, M.; Juan, J.M.; Sanz, J.; Aragón-Angel, A.; Salazar, D. Global prediction of the vertical total electron content of the ionosphere based on GPS data. Radio Sci. 2011, 46, RS0D25. [Google Scholar] [CrossRef] [Green Version]
- Mukhtarov, P.; Andonov, B.; Pancheva, D. Global empirical model of TEC response to geomagnetic activity. J. Geophys. Res. Space Phys. 2013, 118, 6666–6685. [Google Scholar] [CrossRef]
- Chen, Z.; Jin, M.; Deng, Y.; Wang, J.S.; Huang, H.; Deng, X.; Huang, C.M. Improvement of a deep learning algorithm for total electron content maps: Image completion. J. Geophys. Res. Space Phys. 2019, 124, 790–800. [Google Scholar] [CrossRef] [Green Version]
- Cesaroni, C.; Spogli, L.; Aragon-Angel, A.; Fiocca, M.; Dear, V.; De Franceschi, G.; Romano, V. Neural network based model for global Total Electron Content forecasting. J. Space Weather Space Clim. 2020, 10, 11. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zou, S.; Yao, Y.; Wang, Z. Forecasting global ionospheric TEC using deep learning approach. Space Weather 2020, 18, e2020SW002501. [Google Scholar] [CrossRef]
- Schmölter, E.; Berdermann, J. Predicting the Effects of Solar Storms on the Ionosphere Based on a Comparison of Real-Time SolarWind Data with the Best-Fitting Historical Storm Event. Atmosphere 2021, 12, 1684. [Google Scholar] [CrossRef]
- Zhukov, A.V.; Yasyukevich, Y.V.; Bykov, A.E. GIMLi: Global Ionospheric total electron content model based on machine learning. GPS Solut. 2021, 25, 19. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, X.; Hu, X. The variation characteristics and prediction performance of TEC in the geomagnetic latitude and local time coordinate. Radio Sci. 2022, 57, 1–11. [Google Scholar] [CrossRef]
- Ren, X.; Yang, P.; Mei, D.; Liu, H.; Xu, G.; Dong, Y. Global ionospheric TEC forecasting for geomagnetic storm time using a deep learning-based multi-model ensemble method. Space Weather 2023, 21, e2022SW003231. [Google Scholar] [CrossRef]
- Afraimovich, E.L.; Astafyeva, E.I.; Oinats, A.V.; Yasukevich, Y.V.; Zhivetiev, I.V. Global electron content: A new conception to track solar activity. Ann. Geophys. 2008, 26, 335–344. [Google Scholar] [CrossRef] [Green Version]
- Gulyaeva, T.; Veselovsky, I.S. Two-phase storm profile of global electron content in the ionosphere and plasmasphere of the earth. J. Geophys. Res. Space Phys. 2012, 117, A09325. [Google Scholar] [CrossRef] [Green Version]
- Roma-Dollase, D.; Hernández-Pajares, M.; Krankowski, A.; Kotulak, K.; Ghoddousi-Fard, R.; Yuan, Y.; Li, Z.; Zhang, H.; Shi, C.; Wang, C.; et al. Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle. J. Geod. 2017, 92, 691–706. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Mei, D.; Xu, G.; Yang, P.; Ren, X.; Zhang, X. Evaluation and validation of various rapid GNSS global ionospheric maps over one solar cycle. Adv. Space Res. 2022, 70, 2494–2505. [Google Scholar] [CrossRef]
- Li, W.; Wang, K.; Yuan, K. Performance and Consistency of Final Global Ionospheric Maps from Different IGS Analysis Centers. Remote Sens. 2023, 15, 1010. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Matzka, J.; Stolle, C.; Kervalishvili, G.; Rauberg, J.; Bronkalla, O.; Morschhauser, A.; Bruinsma, S.; Shprits, Y.Y.; Jackson, D.R. Geomagnetic Activity Index Hpo. Geophys. Res. Lett. 2022, 49, e2022GL098860. [Google Scholar] [CrossRef]
- Sugiura, M. Hourly Values of Equatorial Dst for IGY; NASA Rept. X-611-63-131; GSFC: Greenbelt, MD, USA, 1963.
- Chicco, D.; Warrens, M.J.; Jurman, G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef]
Event | Launch 3 February 2022 18:13 UT | Launch 7 July 2022 13:11 UT | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Index | 1st Storm Peak | 2nd Storm Peak | 1st Storm Peak | 2nd Storm Peak | ||||||||
DD | UT | Peak | DD | UT | Peak | DD | UT | Peak | DD | UT | Peak | |
B, nT | 03 | 10:15 | 19.79 | 04 | 08:00 | 11.63 | 07 | 13:55 | 20.97 | 08 | 01:45 | 22.21 |
Bz, nT | 03 | 09:35 | −18.56 | 04 | 09:30 | −10.0 | 07 | 13:50 | −17.4 | 08 | 11:00 | −8.34 |
Vsw, km/s | 03 | 14:05 | 579.0 | 04 | 00:55 | 588.1 | 07 | 13:50 | 407.8 | 08 | 07:20 | 423.1 |
Np, cm−3 | 03 | 11:45 | 32.41 | 04 | 00:30 | 24.33 | 07 | 11:25 | 56.84 | 08 | 08:10 | 47.59 |
Tp, K | 03 | 11:15 | 4.7 × 105 | − | − | − | − | − | − | 08 | 06:35 | 4.2 × 105 |
SYM-H, nT | 03 | 10:55 | −80 | 04 | 20:40 | −70 | 08 | 02:15 | −85 | 08 | 11:35 | −42 |
Data Center | JPLR | CODE | BUAG | CASG | UQRG | UADG | |
---|---|---|---|---|---|---|---|
Date | 3 February 2022 | ||||||
GECav | 2 February 2022 | 1.23 | 1.13 | 1.09 | 1.09 | 1.14 | 1.09 |
GECmax | 4 February 2022 | 1.48 | 1.34 | 1.33 | 1.25 | 1.38 | 1.35 |
dGECp, % | 20.3 | 18.6 | 22.0 | 14.7 | 21.0 | 23.9 | |
Date | 7 July 2022 | ||||||
GECav | 6 July 2022 | 1.06 | 0.92 | 0.96 | 0.92 | 0.95 | 0.92 |
GECmax | 8 July 2022 | 1.24 | 1.09 | 1.06 | 1.06 | 1.11 | 1.08 |
dGECp, % | 17.0 | 18.5 | 10.4 | 15.2 | 16.8 | 17.4 |
JPLR | Code | BUAG | CASG | UQRG | UADG | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X | Obs | d1 | d2 | Obs | d1 | d2 | Obs | d1 | d2 | Obs | d1 | d2 | Obs | Obs | |
Y | February 2022 | ||||||||||||||
JPLR | − | −0.05 0.073 | −0.22 0.079 | −1.35 0.109 | −2.20 0.126 | −2.82 0.138 | −3.01 0.142 | −3.04 0.142 | −3.08 0.143 | −3.13 0.144 | −2.22 0.127 | −2.69 0.136 | −1.40 0.110 | −3.41 0.149 | R2 RMS |
CODE | −1.57 0.109 | −2.31 0.123 | −2.42 0.126 | − | −0.25 0.076 | −0.20 0.074 | 0.667 0.039 | −0.374 0.080 | −0.68 0.088 | 0.631 0.041 | 0.074 0.065 | −0.12 0.072 | 0.684 0.038 | 0.681 0.041 | R2 RMS |
BUAG | −3.24 0.142 | −3.84 0.152 | −3.96 0.154 | 0.679 0.039 | −0.52 0.085 | −0.42 0.082 | − | −0.58 0.087 | −0.98 0.097 | 0.839 0.028 | −0.20 0.076 | −0.27 0.078 | 0.359 0.055 | 0.705 0.038 | R2 RMS |
CASG | −4.05 0.144 | −4.57 0.152 | −4.64 0.152 | 0.589 0.041 | −0.73 0.084 | −0.43 0.077 | 0.813 0.028 | −0.70 0.084 | −1.07 0.092 | − | −0.27 0.072 | −0.29 0.073 | 0.248 0.056 | 0.674 0.037 | R2 RMS |
UQRG | −0.89 0.110 | −1.59 0.128 | −1.68 0.131 | 0.772 0.038 | −0.21 0.088 | −0.19 0.087 | 0.521 0.055 | −0.42 0.095 | −0.56 0.100 | 0.514 0.056 | −0.02 0.081 | −0.12 0.085 | − | 0.565 0.053 | R2 RMS |
UADG | −2.67 0.140 | −3.92 0.152 | −3.38 0.153 | 0.604 0.041 | −0.40 0.087 | −0.25 0.082 | 0.739 0.038 | −0.38 0.086 | −0.71 0.096 | 0.750 0.037 | −0.13 0.078 | −0.25 0.082 | 0.484 0.053 | − | R2 RMS |
July 2022 | |||||||||||||||
JPLR | − | −5.58 0.916 | −55.5 0.953 | −0.14 0.135 | −4.27 0.291 | −1.23 0.189 | −0.31 0.145 | −0.76 0.168 | −0.98 0.178 | −0.48 0.154 | −0.52 0.156 | −0.82 0.171 | 0.844 0.141 | −0.66 0.163 | R2 RMS |
CODE | −0.18 0.135 | −5.53 0.814 | −44.9 0.843 | − | −0.67 0.161 | −0.56 0.082 | 0.561 0.082 | 0.931 0.033 | 0.479 0.090 | 0.945 0.029 | 0.647 0.074 | 0.301 0.104 | 0.992 0.029 | 0.917 0.036 | R2 RMS |
BUAG | −0.44 0.145 | −5.53 0.809 | −46.9 0.835 | 0.927 0.033 | −0.67 0.156 | 0.533 0.082 | − | 0.438 0.090 | 0.241 0.105 | 0.907 0.037 | 0.589 0.077 | 0.186 0.109 | 0.984 0.040 | 0.886 0.041 | R2 RMS |
CASG | −0.68 0.154 | −5.53 0.797 | −47.0 0.824 | 0.940 0.029 | −0.51 0.146 | 0.579 0.077 | 0.904 0.037 | 0.370 0.095 | 0.118 0.112 | − | 0.542 0.081 | 0.156 0.109 | 0.991 0.029 | 0.939 0.029 | R2 RMS |
UQRG | 0.783 0.146 | −5.51 0.798 | −5.35 0.788 | 0.982 0.042 | 0762 0.153 | 0.925 0.086 | 0.974 0.050 | 0.898 0.100 | 0.859 0.118 | 0.983 0.041 | 0.925 0.086 | 0.884 0.107 | − | 0.982 0.042 | R2 RMS |
UADG | −0.85 0.163 | −5.47 0.788 | −45.2 0.815 | 0.910 0.036 | −0.32 0.138 | 0.574 0.078 | 0.885 0.041 | 0.334 0.098 | 0.059 0.116 | 0.940 0.029 | 0.483 0.086 | 0.084 0.115 | 0.991 0.029 | − | R2 RMS |
X | JPLR1 | JPLR2 | CODE1 | CODE2 | BUAG1 | BUAG2 | CASG1 | CASG2 | |
---|---|---|---|---|---|---|---|---|---|
Y | 3–5 February 2023 | ||||||||
JPLR | −0.41 0.106 | −0.61 0.113 | R2 RMS | ||||||
CODE | −1.50 0.133 | −1.31 0.128 | R2 RMS | ||||||
BUAG | −1.25 0.125 | −0.45 0.100 | R2 RMS | ||||||
CASG | −0.62 0.101 | −0.46 0.095 | R2 RMS | ||||||
7–9 July 2022 | |||||||||
JPLR | −1.25 0.097 | −1.68 0.106 | R2 RMS | ||||||
CODE | −4.98 0.153 | −0.99 0.088 | R2 RMS | ||||||
BUAG | −1.54 0.096 | −2.47 0.112 | R2 RMS | ||||||
CASG | −1.00 0.086 | −2.67 0.116 | R2 RMS |
X | 6 h | 12 h | 18 h | 24 h | 48 h | |
---|---|---|---|---|---|---|
Y | 3–5 February 2022 | |||||
UQRG | −1.18 0.149 | −2.53 0.190 | −1.68 0.166 | −2.71 0.195 | −1.52 0.160 | R2 RMS |
UADG | −0.39 0.201 | −0.75 0.225 | −0.67 0.220 | −1.107 0.248 | −43.8 1.142 | R2 RMS |
7–8 July 2022 | ||||||
UQRG | −0.17 0.086 | −0.32 0.092 | −0.71 0.104 | −3.60 0.170 | −2.40 0.147 | R2 RMS |
UADG | −0.19 0.081 | −0.29 0.084 | −0.72 0.097 | −3.95 0.164 | −2.38 0.136 | R2 RMS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gulyaeva, T.; Hernández-Pajares, M.; Stanislawska, I. Ionospheric Weather at Two Starlink Launches during Two-Phase Geomagnetic Storms. Sensors 2023, 23, 7005. https://doi.org/10.3390/s23157005
Gulyaeva T, Hernández-Pajares M, Stanislawska I. Ionospheric Weather at Two Starlink Launches during Two-Phase Geomagnetic Storms. Sensors. 2023; 23(15):7005. https://doi.org/10.3390/s23157005
Chicago/Turabian StyleGulyaeva, Tamara, Manuel Hernández-Pajares, and Iwona Stanislawska. 2023. "Ionospheric Weather at Two Starlink Launches during Two-Phase Geomagnetic Storms" Sensors 23, no. 15: 7005. https://doi.org/10.3390/s23157005
APA StyleGulyaeva, T., Hernández-Pajares, M., & Stanislawska, I. (2023). Ionospheric Weather at Two Starlink Launches during Two-Phase Geomagnetic Storms. Sensors, 23(15), 7005. https://doi.org/10.3390/s23157005