Crop Mapping Based on Sentinel-2 Images Using Semantic Segmentation Model of Attention Mechanism
Abstract
:1. Introduction
2. Study Area and Experimental Data
2.1. Study Area
2.2. Sentinel-2 Datasets
2.3. Ground Truth
2.4. Training and Test Sample
3. Crop Mapping Based on Deep Learning
3.1. Attention Mechanism in Artificial Neural Network
3.2. Attention Mechanism Neural Network A2SegNet
3.3. Model Construction and Training Strategy
- Operating system: Windows 7 Professional SP1.
- CPU configuration: Intel(R) Xeon(R) CPU E5-1650 v4 3.6 GHz 12-core processor.
- Memory size: 64 GB.
- Graphics configuration: NVIDIA Quadro P4000.
- Programming language: Python.
- Deep learning development frameworks: TensorFlow, Keras.
3.4. Evaluation Metrics
4. Experimental Results
4.1. Features Learned Using the Deep Learning Model
4.2. Crop Identification Accuracy
4.3. Crop Prediction Results
4.4. Transferability Comparison of Deep Learning Models
5. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, B.; Xin, X.; Qin, Z.; Shi, Z.; Liu, H.; Chen, Z.; Yang, G.; Wu, W.; Chen, Y.; Wu, X. Remote sensing monitoring on dynamic status of grassland productivity and animal loading balance in Northern China. In Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; Volume 4, pp. 2306–2309. [Google Scholar] [CrossRef]
- Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Dedieu, G. Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas. Remote Sens. Environ. 2016, 187, 156–168. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, W.; Li, G.; Zhang, H. An approach for flood inundated duration extraction based on Level Set Method using remote sensing data. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 1820–1822. [Google Scholar] [CrossRef]
- Zeng, Z.-C.; Wang, Y.; Pongetti, T.J.; Gong, F.-Y.; Newman, S.; Li, Y.; Natraj, V.; Shia, R.-L.; Yung, Y.L.; Sander, S.P. Tracking the atmospheric pulse of a North American megacity from a mountaintop remote sensing observatory. Remote Sens. Environ. 2020, 248, 112000. [Google Scholar] [CrossRef]
- Jeong, S.; Ko, J.; Yeom, J.M. Predicting rice yield at pixel scale through synthetic use of crop and deep learning models with satellite data in South and North Korea. Sci. Total Environ. 2021, 802, 149726. [Google Scholar] [CrossRef]
- Xu, J.; Yang, J.; Xiong, X.; Li, H.; Huang, J.; Ting, K.C.; Ying, Y.; Lin, T. Towards interpreting multi-temporal deep learning models in crop mapping. Remote Sens. Environ. 2021, 264, 112599. [Google Scholar] [CrossRef]
- Ofori-Ampofo, S.; Pelletier, C.; Lang, S. Crop Type Mapping from Optical and Radar Time Series Using Attention Based Deep Learning. Remote Sens. 2021, 13, 4668. [Google Scholar] [CrossRef]
- Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [Google Scholar] [CrossRef]
- Wright, C.; Gallant, A. Improved wetland remote sensing in Yellowstone National Park using classification trees to combine TM imagery and ancillary environmental data. Remote Sens. Environ. 2007, 107, 582–605. [Google Scholar] [CrossRef]
- Mcroberts, R.E.; Tomppo, E.O. Remote sensing support for national forest inventories. Remote Sens. Environ. 2007, 110, 412–419. [Google Scholar] [CrossRef]
- Blickensdörfer, L.; Schwieder, M.; Pflugmacher, D.; Nendel, C.; Erasmi, S.; Hostert, P. Mapping of crop types and crop sequences with combined time series of Sentinel-1,Sentinel-2 and Landsat 8 data for Germany. Remote Sens. Environ. 2022, 269, 112831. [Google Scholar] [CrossRef]
- Chakhar, A.; Ortega-Terol, D.; Hernández-López, D.; Ballesteros, R.; Ortega, J.F.; Moreno, M.A. Assessing the Accuracy of Multiple Classification Algorithms for Crop Classification Using Landsat-8 and Sentinel-2 Data. Remote Sens. 2020, 12, 1735. [Google Scholar] [CrossRef]
- Hao, P.Y.; Tang, H.J.; Chen, Z.X.; Yu, L.; Wu, M.-Q. High resolution crop intensity mapping using harmonized Landsat-8 and Sentinel-2 data. J. Integr. Agric. 2019, 18, 2883–2897. [Google Scholar] [CrossRef]
- Xu, J.; Zhu, Y.; Zhong, R.; Lin, Z.; Xu, J.; Jiang, H.; Huang, J.; Li, H.; Lin, T. DeepCropMapping: A multi-temporal deep learning approach with improved spatial generalizability for dynamic corn and soybean mapping. Remote Sens. Environ. 2020, 247, 111946. [Google Scholar] [CrossRef]
- He, S.; Yang, M.; Li, W. The discussion about origin of fuzzy uncertainty of remote sensing data and processing methods. Sci. Surv. Mapp. 2008, 6, 107–109+25. [Google Scholar]
- Xu, C.; Tao, W. Combining Active Learning and Semi-Supervised Learning by Using Selective Label Spreading. In Proceedings of the 2017 IEEE International Conference on Data Mining Workshops (ICDMW), New Orleans, LA, USA, 18–21 November 2017. [Google Scholar]
- Boryan, C.; Yang, Z.; Mueller, R.; Craig, M. Monitoring US agriculture: The US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program. Geocarto Int. 2011, 26, 341–358. [Google Scholar] [CrossRef]
- Rahman, M.; Di, L.; Yu, E.; Zhang, C. In-Season Major Crop-Type Identification for US Cropland from Landsat Images Using Crop-Rotation Pattern and Progressive Data Classification. Agriculture 2019, 9, 17. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Liu, S.; Tan, Z.; Bliss, N.B.; Young, C.J.; West, T.O.; Ogle, S.M. Comparing cropland net primary production estimates from inventory, a satellite-based model, and a process-based model in the Midwest of the United States. Ecol. Model. 2014, 277, 1–12. [Google Scholar] [CrossRef]
- Herdy, C.; Luvall, J.; Cooksey, K.; Brenton, J.; Barrick, B.; Padgett-Vasquesz, S. Alabama Disasters: Leveraging NASA EOS to explore the environmental and economic impact of the April 27 tornado outbreak. In Proceedings of the 5th Wernher von Braun Memorial Symposium, Huntsville, AL, USA, 26–28 October 2012; pp. 1–9. [Google Scholar]
- Jianhua, Z. Remote Sensing Image Classification Using an Adaptive Min Distance Algorithm. J. Image Graph. 2000, 1, 21–24. [Google Scholar]
- Luo, J.C.; Wang, Q.M.; Ma, J.H.; Zhou, C.H.; Leung, Y. The EM-based Maximum Likelihood Classifier for Remotely Sensed Data. Acta Geod. Cartogr. Sin. 2002, 3, 234–239. [Google Scholar]
- Yu, Y.; Pan, J.; Xing, L.; Liu, J. Identification of High Temperature Targets in Remote Sensing Imagery Based on Mahalanobis Distance. Remote Sens. Inf. 2013, 5, 90–94. [Google Scholar]
- Zhang, Y.; Zhang, L. Machine Learning Theory and Algorithm; China Science Publishing & Media Ltd.: Beijing, China, 2012. [Google Scholar]
- Liu, Y. Research on Remote Sensing Image Classification Based on Machine Learning; Tsinghua University Press: Beijing, China, 2014. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 39, 640–651. [Google Scholar]
- Xuan, T.; Liang, W.; Qi, D. Review of Image Semantic Segmentation Based on Deep Learning. J. Softw. 2019, 30, 440–468. [Google Scholar]
- Guo, M.H.; Xu, T.X.; Liu, J.J.; Jiang, P.T.; Mu, T.J.; Zhang, S.H.; Martin, R.R.; Cheng, M.M.; Hu, S.M. Attention Mechanisms in Computer Vision: A Survey. Comput. Vis. Media 2021, 8, 331–368. [Google Scholar] [CrossRef]
- Liu, J.; Xu, X.; Shi, Y.; Deng, C.; Shi, M. Relaxnet: Residual efficient learning and attention expected fusion network for real-time semantic segmentation. Neurocomputing 2022, 474, 115–127. [Google Scholar] [CrossRef]
- Alhichri, H.; Alsuwayed, A.; Bazi, Y.; Ammour, N.; Alajlan, N.A. Classification of Remote Sensing Images using EfficientNet-B3 CNN Model with Attention. IEEE Access 2021, 9, 14078–14094. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Wang, H.; Wu, J.; Li, Y. CNN Cloud Detection Algorithm Based on Channel and Spatial Attention and Probabilistic Upsampling for Remote Sensing Image. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5404613. [Google Scholar] [CrossRef]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Masouleh, K. Fusion of deep learning with adaptive bilateral filter for building outline extraction from remote sensing imagery. J. Appl. Remote Sens. 2018, 12, 046018. [Google Scholar] [CrossRef]
- Akar, Ö.; Güngör, O. Integrating multiple texture methods and NDVI to the Random Forest classification algorithm to detect tea and hazelnut plantation areas in northeast Turkey. Int. J. Remote Sens. 2015, 36, 442–464. [Google Scholar] [CrossRef]
- Solutions, Decision Innovation. Multi-State Land Use Study: Estimated Land Use Changes 2007–2012, Urbandale, IA, USA. 2013, p. 50322. Available online: http://www.decision-innovation.com/webres/File/docs/130715%20Multi-State%20Land%20Use%20Report.pdf (accessed on 18 May 2023).
- Copenhaver, K.; Hamada, Y.; Mueller, S.; Dunn, J.B. Examining the Characteristics of the Cropland Data Layer in the Context of Estimating Land Cover Change. ISPRS Int. J. Geo. Inf. 2021, 10, 281. [Google Scholar] [CrossRef]
- Jie, H.; Li, S.; Gang, S. Squeeze-and-Excitation Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Mnih, V.; Heess, N.; Graves, A.; Kavukcuoglu, K. Recurrent models of visual attention. arXiv 2014, arXiv:1406.6247v1. [Google Scholar]
- Zequin, Q.; Zhang, P.; Wu, F.; Xi, L. FcaNet: Frequency Channel Attention Networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 783–792. [Google Scholar]
- Yang, G.Y.; Li, X.L.; Martin, R.R.; Hu, S.M. Sampling Equivariant Self-attention Networks for Object Detection in Aerial Images. arXiv 2021, arXiv:2111.03420v1. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, C.; Zhang, Z.; Zhu, Y.; Lin, H.; Zhang, Z.; Sun, Y.; He, T.; Mueller, J.; Manmatha, R.; et al. Resnest: Split-attention networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, New Orleans, LA, USA, 19–20 June 2020. [Google Scholar]
- Li, X.; Wang, W.; Hu, X.; Yang, J. Selective Kernel Networks. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 510–519. [Google Scholar] [CrossRef] [Green Version]
- Woo, S.; Park, J.; Lee, J.-Y.; So, I.; Cbam, K. Convolutional block attention module. In Proceedings of the European Conference on Computer Vision, Florence, Italy, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Zhang, Z.; Lan, C.; Zeng, W.; Jin, X.; Chen, Z. Relation-Aware Global Attention for Person Re-Identification. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 3183–3192. [Google Scholar]
- Hou, Q.; Zhou, D.; Feng, J. Coordinate attention for efficient mobile network design. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, Nashvile, TN, USA, 20–25 June 2021; pp. 13713–13722. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Lecture Notes in Computer Science, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Zhou, Z.; Rahman Siddiquee, M.M.; Tajbakhsh, N.; Liang, J. UNet++: A Nested UNet Architecture for Medical Image Segmentation. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Springer: Berlin/Heidelberg, Germany, 2018; Chapter 1; pp. 3–11. [Google Scholar]
- Qin, X.; Zhang, Z.; Huang, C.; Dehghan, M.; Zaine, O.R.; Jagersand, M. U2-Net: Going deeper with nested U-structure for salient object detection. Pattern Recognit. 2020, 106, 107404. [Google Scholar] [CrossRef]
- Yi, X.; Zhong, C. Deep Learning for Joint Channel Estimation and Signal Detection in OFDM Systems. IEEE Commun. Lett. 2020, 24, 2780–2784. [Google Scholar] [CrossRef]
- Van Der Maaten, L.; Hinton, G.E. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
Year | Crop Types | Sample Count | Area/km2 |
---|---|---|---|
2019 | Corn Soybean | 2,638,516 1,817,173 | 2374.7 1635.5 |
2020 | Corn Soybean | 2,266,755 1,826,571 | 2040.1 1643.9 |
2021 | Corn Soybean | 2,143,880 1,880,755 | 1929.5 1692.7 |
Band | Description | Central Wavelength (nm) | Bandwidth (nm) | Spatial Resolution (m) |
---|---|---|---|---|
band 2 | Blue | 490 | 98 | 10 |
band 3 | Green | 560 | 46 | 10 |
band 4 | Red | 665 | 39 | 10 |
band 5 | Vegetation Red Edge | 705 | 20 | 10 |
band 6 | Vegetation Red Edge | 740 | 18 | 10 |
band 8 | NIR | 842 | 133 | 10 |
NDVI | - | - | 10 | |
EVI | - | - | 10 |
Year | Evaluation Index | RF | SegNet | UNet | UNet++ | A2SegNet |
---|---|---|---|---|---|---|
2019 | OA | 0.8571 | 0.8807 | 0.8879 | 0.9036 | 0.9153 |
MIoU | 0.7236 | 0.7585 | 0.7765 | 0.8024 | 0.8249 | |
Kappa | 0.7742 | 0.8092 | 0.8234 | 0.8469 | 0.8654 | |
2020 | OA | 0.8879 | 0.8713 | 0.8991 | 0.9101 | 0.9268 |
MIoU | 0.7785 | 0.7438 | 0.7954 | 0.8154 | 0.8472 | |
Kappa | 0.8254 | 0.7973 | 0.8421 | 0.8592 | 0.8856 | |
2021 | OA | 0.9013 | 0.9019 | 0.9188 | 0.9339 | 0.9419 |
MIoU | 0.7687 | 0.7537 | 0.8026 | 0.8324 | 0.8494 | |
Kappa | 0.8378 | 0.8362 | 0.8662 | 0.8908 | 0.9042 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, M.; Lu, T.; Wang, L. Crop Mapping Based on Sentinel-2 Images Using Semantic Segmentation Model of Attention Mechanism. Sensors 2023, 23, 7008. https://doi.org/10.3390/s23157008
Gao M, Lu T, Wang L. Crop Mapping Based on Sentinel-2 Images Using Semantic Segmentation Model of Attention Mechanism. Sensors. 2023; 23(15):7008. https://doi.org/10.3390/s23157008
Chicago/Turabian StyleGao, Meixiang, Tingyu Lu, and Lei Wang. 2023. "Crop Mapping Based on Sentinel-2 Images Using Semantic Segmentation Model of Attention Mechanism" Sensors 23, no. 15: 7008. https://doi.org/10.3390/s23157008
APA StyleGao, M., Lu, T., & Wang, L. (2023). Crop Mapping Based on Sentinel-2 Images Using Semantic Segmentation Model of Attention Mechanism. Sensors, 23(15), 7008. https://doi.org/10.3390/s23157008