Exploring Digital Twin-Based Fault Monitoring: Challenges and Opportunities
Abstract
:1. Introduction
2. Methodology
3. Digital Twin Architecture
3.1. Layers of Digital Twin Architecture
3.2. Digital Twin Prediction Methods
4. Digital Twin in Fault Monitoring
4.1. Equipment-Level Application
4.2. System-Level Application
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FM | Fault Monitoring |
DT | Digital Twin |
IoT | Internet of Things |
ML | Machine Learning |
RUL | Remaining Useful Life |
SPHM | Smart Prognostics and Health Management |
PHM | Prognostics and Health Management |
FD | Fault Diagnosis |
PV | Photovoltaic |
MEMS | Micro-Electro-Mechanical Systems |
UDS | Unified Digital System |
SOC | State of Charge |
SOH | State of Health |
OBD | On-Board Diagnosis |
DES | Discrete Event Simulation |
BN | Bayesian Network |
SHD | Structural Hamming Distance metric |
PVECU | PV Energy Conversion Unit |
FI | Fault Identification |
References
- Yang, F.; Cui, Y.; Wu, F.; Zhang, R. Fault monitoring of chemical process based on sliding window wavelet DenoisingGLPP. Processes 2021, 9, 86. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Liu, X.; Ma, T.; Tang, Z. MWRSPCA: Online fault monitoring based on moving window recursive sparse principal component analysis. J. Intell. Manuf. 2022, 33, 1255–1271. [Google Scholar] [CrossRef]
- Rodríguez Ramos, A.; Bernal de Lázaro, J.M.; Prieto-Moreno, A.; da Silva Neto, A.J.; Llanes-Santiago, O. An approach to robust fault diagnosis in mechanical systems using computational intelligence. J. Intell. Manuf. 2019, 30, 1601–1615. [Google Scholar] [CrossRef]
- Yang, W.; Zimroz, R.; Papaelias, M. Advances in Machine Condition Monitoring and Fault Diagnosis. Electronics 2022, 11, 10. [Google Scholar]
- Xu, L.D.; Xu, E.L.; Li, L. Industry 4.0: State of the art and future trends. Int. J. Prod. Res. 2018, 56, 2941–2962. [Google Scholar] [CrossRef] [Green Version]
- Berghout, T.; Benbouzid, M.; Muyeen, S.; Bentrcia, T.; Mouss, L.H. Auto-NAHL: A neural network approach for condition-based maintenance of complex industrial systems. IEEE Access 2021, 9, 152829–152840. [Google Scholar] [CrossRef]
- Sezer, E.; Romero, D.; Guedea, F.; Macchi, M.; Emmanouilidis, C. An industry 4.0-enabled low cost predictive maintenance approach for smes. In Proceedings of the 2018 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), Stuttgart, Germany, 17–20 June 2018; IEEE: New York, NY, USA, 2018; pp. 1–8. [Google Scholar]
- Peng, J.; Xia, G.; Li, Y.; Song, Y.; Hao, M. Knowledge-based prognostics and health management of a pumping system under the linguistic decision-making context. Expert Syst. Appl. 2022, 209, 118379. [Google Scholar] [CrossRef]
- Yaman, O.; Biçen, Y. An Internet of Things (IoT) based monitoring system for oil-immersed transformers. Balk. J. Electr. Comput. Eng. 2019, 7, 226–234. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Zhang, C.; Li, Z.; Ding, K.; Wang, C. Knowledge-driven digital twin manufacturing cell towards intelligent manufacturing. Int. J. Prod. Res. 2020, 58, 1034–1051. [Google Scholar] [CrossRef]
- Grieves, M.; Vickers, J. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches; Springer: Cham, Switzerland, 2017; pp. 85–113. [Google Scholar]
- Tao, F.; Sui, F.; Liu, A.; Qi, Q.; Zhang, M.; Song, B.; Guo, Z.; Lu, S.C.Y.; Nee, A.Y. Digital twin-driven product design framework. Int. J. Prod. Res. 2019, 57, 3935–3953. [Google Scholar] [CrossRef] [Green Version]
- LaGrange, E. Developing a digital twin: The roadmap for oil and gas optimization. In Proceedings of the SPE Offshore Europe Conference and Exhibition, Aberdeen, UK, 3–6 September 2019; OnePetro: Richardson, TX, USA, 2019. [Google Scholar]
- Sukhorukov, A.; Eroshkin, S.; Vanyurikhin, P.; Karabahciev, S.; Bogdanova, E. Robotization of business processes of enterprises of housing and communal services. E3S Web Conf. EDP Sci. 2019, 110, 02082. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Li, H.; Mao, Z.; Liu, F.; Zhang, J.; Jiang, Z.; Li, H. A digital twin auxiliary approach based on adaptive sparse attention network for diesel engine fault diagnosis. Sci. Rep. 2022, 12, 675. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.N.; Ponciroli, R.; Bruck, P.; Esselman, T.C.; Rigatti, J.A.; Vilim, R.B. A digital twin approach to system-level fault detection and diagnosis for improved equipment health monitoring. Ann. Nucl. Energy 2022, 170, 109002. [Google Scholar] [CrossRef]
- Stoumpos, S.; Theotokatos, G. A novel methodology for marine dual fuel engines sensors diagnostics and health management. Int. J. Engine Res. 2022, 23, 974–994. [Google Scholar] [CrossRef]
- Peng, C.C.; Chen, Y.H. Digital Twins-Based Online Monitoring of TFE-731 Turbofan Engine Using Fast Orthogonal Search. IEEE Syst. J. 2022, 16, 3060–3071. [Google Scholar] [CrossRef]
- Lin, L.; Athe, P.; Rouxelin, P.; Avramova, M.; Gupta, A.; Youngblood, R.; Lane, J.; Dinh, N. Digital-twin-based improvements to diagnosis, prognosis, strategy assessment, and discrepancy checking in a nearly autonomous management and control system. Ann. Nucl. Energy 2022, 166, 108715. [Google Scholar] [CrossRef]
- Chen, W.; Feng, B.; Tan, Z.; Wu, N.; Song, F. Intelligent fault diagnosis framework of microgrid based on cloud–edge integration. Energy Rep. 2022, 8, 131–139. [Google Scholar] [CrossRef]
- Lv, Z.; Guo, J.; Lv, H. Safety Poka Yoke in Zero-Defect Manufacturing Based on Digital Twins. IEEE Trans. Ind. Inform. 2022, 19, 1176–1184. [Google Scholar] [CrossRef]
- Piltan, F.; Toma, R.N.; Shon, D.; Im, K.; Choi, H.K.; Yoo, D.S.; Kim, J.M. Strict-Feedback Backstepping Digital Twin and Machine Learning Solution in AE Signals for Bearing Crack Identification. Sensors 2022, 22, 539. [Google Scholar] [CrossRef]
- Giannaros, E.; Kotzakolios, A.; Kostopoulos, V.; Sotiriadis, G.; Vignjevic, R.; Djordjevic, N.; Boccaccio, M.; Meo, M. Low- and high-fidelity modeling of sandwich-structured composite response to bird strike, as tools for a digital-twin-assisted damage diagnosis. Int. J. Impact Eng. 2022, 160, 104058. [Google Scholar] [CrossRef]
- Garg, H.; Sharma, B.; Shekhar, S.; Agarwal, R. Spoofing detection system for e-health digital twin using EfficientNet Convolution Neural Network. Multimed. Tools Appl. 2022, 81, 26873–26888. [Google Scholar] [CrossRef]
- Sisson, W.; Karve, P.; Mahadevan, S. Digital Twin Approach for Component Health-Informed Rotorcraft Flight Parameter Optimization. AIAA J. 2022, 60, 1923–1936. [Google Scholar] [CrossRef]
- Ademujimi, T.; Prabhu, V. Digital Twin for Training Bayesian Networks for Fault Diagnostics of Manufacturing Systems. Sensors 2022, 22, 1430. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Fang, J.; Liu, F.; Chen, W.; Liu, Z.; Liao, J.; Tan, J. Real-time State Mirror-mapping for Driving and Bolting Integration Equipment Based on Digital Twin. Hunan Daxue Xuebao/J. Hunan Univ. Nat. Sci. 2022, 49, 1–12. [Google Scholar] [CrossRef]
- Haas, R.; Pichler, K. Fault diagnosis in a hydraulic circuit using a support vector machine trained by a digital twin. In Dynamics and Control of Advanced Structures and Machines: Contributions from the 4th International Workshop, Linz, Austria, 21 September 2004; Springer: Cham, Switzerland, 2022; pp. 47–60. [Google Scholar]
- Piltan, F.; Kim, J.M. An Adaptive-Backstepping Digital Twin-Based Approach for Bearing Crack Size Identification Using Acoustic Emission Signals. In Intelligent Systems Design and Applications, Proceedings of the 21st International Conference on Intelligent Systems Design and Applications (ISDA 2021), Online, 13–15 December 2021; Springer: Cham, Switzerland, 2022; Volume 418. [Google Scholar] [CrossRef]
- Zhang, X.; Lv, X.; Wang, Y.; Fan, H. Production process management for intelligent coal mining based on digital twin. In Digital Twin Driven Service; Elsevier: Amsterdam, The Netherlands, 2022; pp. 251–277. [Google Scholar]
- Suhail, S.; Hussain, R.; Jurdak, R.; Hong, C.S. Trustworthy Digital Twins in the Industrial Internet of Things with Blockchain. IEEE Internet Comput. 2022, 26, 58–67. [Google Scholar] [CrossRef]
- Xie, X.; Merino, J.; Moretti, N.; Pauwels, P.; Chang, J.Y.; Parlikad, A. Digital twin enabled fault detection and diagnosis process for building HVAC systems. Autom. Constr. 2023, 146, 104695. [Google Scholar] [CrossRef]
- Tang, L.; Huang, X.; Zhang, C.; He, X.; Zhu, T.; Gu, L.; Wan, Y. Health Assessment and Fault Diagnosis of Substation Equipment Based on Digital Twin. J. Phys. Conf. Ser. 2021, 2030, 012094. [Google Scholar] [CrossRef]
- Zhang, S.; Dong, H.; Maschek, U.; Song, H. A digital-twin-assisted fault diagnosis of railway point machine. In Proceedings of the 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI), Beijing, China, 15 July–15 August 2021; pp. 430–433. [Google Scholar] [CrossRef]
- Moutis, P.; Alizadeh-Mousavi, O. Digital Twin of Distribution Power Transformer for Real-Time Monitoring of Medium Voltage from Low Voltage Measurements. IEEE Trans. Power Deliv. 2021, 36, 1952–1963. [Google Scholar] [CrossRef]
- Seghezzi, E.; Locatelli, M.; Pellegrini, L.; Pattini, G.; Giuda, G.M.D.; Tagliabue, L.C.; Boella, G. Towards an occupancy-oriented digital twin for facility management: Test campaign and sensors assessment. Appl. Sci. 2021, 11, 3108. [Google Scholar] [CrossRef]
- Wei, Y.; Guo, L.; Chen, L.; Zhang, H.; Hu, X.; Zhou, H.; Li, G. Research and implementation of digital twin workshop based on real-time data driven. Jisuanji Jicheng Zhizao Xitong/Comput. Integr. Manuf. Syst. CIMS 2021, 27, 352–363. [Google Scholar] [CrossRef]
- Zhou, K.; Yang, S.; Guo, Z.; Long, X.; Hou, J.; Jin, T. Design of automatic spray monitoring and tele-operation system based on digital twin technology. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 235, 7709–7725. [Google Scholar] [CrossRef]
- Sundaram, S.; Zeid, A. Smart prognostics and health management (SPHM) in smart manufacturing: An interoperable framework. Sensors 2021, 21, 5994. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Hu, W.; Liu, Z.; Tan, J. A capsnet-based fault diagnosis method for a digital twin of a wind turbine gearbox. In Proceedings of the ASME 2021 Power Conference, Online, 20–22 July 2021; Volume 2021. [Google Scholar] [CrossRef]
- Hu, J.; Hu, N.; Luo, P.; Yang, Y. Fault Diagnosis of Gearbox Based on Digital Twin Concept Model. In Proceedings of the 2021 4th International Conference on Intelligent Robotics and Control Engineering (IRCE), Lanzhou, China, 18–20 September 2021. [Google Scholar] [CrossRef]
- Wang, H.; Lin, P.; Hou, Z.; Sun, S. Research on Intelligent Monitoring and Maintenance Technology of Substation Based on Digital Twin. J. Phys. Conf. Ser. 2021, 2136, 012029. [Google Scholar] [CrossRef]
- Tan, Y.; Niu, C.; Tian, H.; Zhang, J. A Digital Twin Based Design of the Semi-physical Marine Engine Room Simulator for Remote Maintenance Assistance. In Proceedings of the 2021 5th International Conference on Vision, Image and Signal Processing (ICVISP), Kuala Lumpur, Malaysia, 18–20 December 2021. [Google Scholar] [CrossRef]
- Xing, Y.; Song, X.; Zhang, Z.; Zhang, J.; Song, W.; Liu, B. Intelligent Diagnosis Method of Distribution Network Fault for Construction of Digital Twin Coordination System. In Proceedings of the 2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2), Taiyuan, China, 22–24 October 2021. [Google Scholar] [CrossRef]
- Deebak, B.D.; Al-Turjman, F. Digital-twin assisted: Fault diagnosis using deep transfer learning for machining tool condition. Int. J. Intell. Syst. 2021, 37, 10289–10316. [Google Scholar] [CrossRef]
- Xia, M.; Shao, H.; Williams, D.; Lu, S.; Shu, L.; de Silva, C.W. Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning. Reliab. Eng. Syst. Saf. 2021, 215, 107938. [Google Scholar] [CrossRef]
- Liu, J.; Yu, D.; Hu, Y.; Yu, H.; He, W.; Zhang, L. CNC Machine Tool Fault Diagnosis Integrated Rescheduling Approach Supported by Digital Twin-Driven Interaction and Cooperation Framework. IEEE Access 2021, 9, 118801–118814. [Google Scholar] [CrossRef]
- Olatunji, O.O.; Adedeji, P.A.; Madushele, N.; Jen, T.C. Overview of Digital Twin Technology in Wind Turbine Fault Diagnosis and Condition Monitoring. In Proceedings of the 2021 IEEE 12th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT), Cape Town, South Africa, 13–15 May 2021. [Google Scholar] [CrossRef]
- Zhang, M.; Amaitik, N.; Xu, Y.; Rossini, R.; Bosi, I.; Cedola, A.P. A New Implementation of Digital Twins for Fault Diagnosis of Large Industrial Equipment. J. Robot. Mech. Eng. 2021, 1, 1–7. [Google Scholar] [CrossRef]
- Lee, J.; Lin, L.; Athe, P.; Dinh, N. Development of the Machine Learning-based Safety Significant Factor Inference Model for Diagnosis in Autonomous Control System. Ann. Nucl. Energy 2021, 162, 108443. [Google Scholar] [CrossRef]
- Lopes, T.D.; Raizer, A.; Júnior, W.V. The use of digital twins in finite element for the study of induction motors faults. Sensors 2021, 21, 7833. [Google Scholar] [CrossRef]
- Gao, D.; Liu, P.; Jiang, S.; Gao, X.; Wang, K.; Zhao, A.; Xue, Y. Intelligent instrument fault diagnosis and prediction system based on digital twin technology. J. Phys. Conf. Ser. 2021, 1983, 012106. [Google Scholar] [CrossRef]
- Classens, K.; Heemels, W.P.; Oomen, T. Digital twins in mechatronics: From model-based control to predictive maintenance. In Proceedings of the 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI), Beijing, China, 15 July–15 August 2021. [Google Scholar] [CrossRef]
- Zhu, Y.; Qian, Z.; Yuan, S.; Yu, H. Fault Diagnosis of High-Voltage Circuit Breaker Based on Digital Twin. In Proceedings of the 2021 International Conference on Advanced Electrical Equipment and Reliable Operation (AEERO), Beijing, China, 15–17 October 2021. [Google Scholar] [CrossRef]
- Zhen, W.; Dunbing, T.; Changchun, L.; Xin, X.; Linqi, Z.; Zhuocheng, Z.; Xuan, L. Augmented-Reality-Assisted Bearing Fault Diagnosis in Intelligent Manufacturing Workshop Using Deep Transfer Learning. In Proceedings of the 2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing), Nanjing, China, 15–17 October 2021. [Google Scholar] [CrossRef]
- Bhatti, G.; Singh, R.R. Intelligent Fault Diagnosis Mechanism for Industrial Robot Actuators using Digital Twin Technology. In Proceedings of the 2021 IEEE International Power and Renewable Energy Conference (IPRECON), Kollam, India, 24–26 September 2021. [Google Scholar] [CrossRef]
- Merkle, L.; Pöthig, M.; Schmid, F. Estimate e-golf battery state using diagnostic data and a digital twin. Batteries 2021, 7, 15. [Google Scholar] [CrossRef]
- Liu, J.; Lu, X.; Zhou, Y.; Cui, J.; Wang, S.; Zhao, Z. Design of Photovoltaic Power Station Intelligent Operation and Maintenance System Based on Digital Twin. In Proceedings of the 2021 6th International Conference on Robotics and Automation Engineering (ICRAE), Guangzhou, China, 19–22 November 2021. [Google Scholar] [CrossRef]
- Ren, S.S.; Shen, F.; Zhang, X.Y.; Feng, C.M.; Luo, H.W. Digital Twin of Beam Pumping Unit Control and Analysis. J. Phys. Conf. Ser. 2021, 1894, 012031. [Google Scholar] [CrossRef]
- Yu, Q.; Huang, Y.; Liu, Y.; Yu, S.; Wang, S. Research on Application of Information Model in Wind Turbine Fault Diagnosis. In Proceedings of the 2nd International Conference on Artificial Intelligence in Electronics Engineering, Phuket, Thailand, 15–17 January 2021. [Google Scholar] [CrossRef]
- Delong, Z.; Zhijun, Y.; Huipeng, C.; Peng, Z.; Jiliang, L. Research on Digital Twin Model and Visualization of Power Transformer. In Proceedings of the 2021 IEEE International Conference on Networking, Sensing and Control (ICNSC), Xiamen, China, 3–5 December 2021. [Google Scholar] [CrossRef]
- Shangguan, D.; Chen, L.; Ding, J. A digital twin-based approach for the fault diagnosis and health monitoring of a complex satellite system. Symmetry 2020, 12, 1307. [Google Scholar] [CrossRef]
- Bouzid, S.; Viarouge, P.; Cros, J. Real-time digital twin of a wound rotor induction machine based on finite element method. Energies 2020, 13, 5413. [Google Scholar] [CrossRef]
- Panov, V.; Cruz-Manzo, S. Gas turbine performance digital twin for real-time embedded systems. Turbo Expo Power Land Sea Air 2020, 5, V005T05A010. [Google Scholar] [CrossRef]
- Jain, P.; Poon, J.; Singh, J.P.; Spanos, C.; Sanders, S.R.; Panda, S.K. A digital twin approach for fault diagnosis in distributed photovoltaic systems. IEEE Trans. Power Electron. 2020, 35, 940–956. [Google Scholar] [CrossRef]
- Rossini, R.; Conzon, D.; Prato, G.; Pastrone, C.; Reis, J.; Gonçalves, G. REPLICA: A solution for next generation iot and digital twin based fault diagnosis and predictive maintenance. SAM IoT 2020, 2739, 55–62. [Google Scholar]
- Palchevskyi, B.; Krestyanpol, L. The use of the “digital twin” concept for proactive diagnosis of technological packaging systems. In Data Stream Mining & Processing, Proceedings of the Third International Conference, DSMP 2020, Lviv, Ukraine, 21–25 August 2020; Springer: Cham, Switzerland, 2020; Volume 1158. [Google Scholar] [CrossRef]
- Wang, J.; Ye, L.; Gao, R.X.; Li, C.; Zhang, L. Digital Twin for rotating machinery fault diagnosis in smart manufacturing. Int. J. Prod. Res. 2019, 57, 3920–3934. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, Y.; Liu, X.; Zheng, Y. A Digital-Twin-Assisted Fault Diagnosis Using Deep Transfer Learning. IEEE Access 2019, 7, 19990–19999. [Google Scholar] [CrossRef]
- Luo, W.; Hu, T.; Zhang, C.; Wei, Y. Digital twin for CNC machine tool: Modeling and using strategy. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 1129–1140. [Google Scholar] [CrossRef]
- Venkatesan, S.; Manickavasagam, K.; Tengenkai, N.; Vijayalakshmi, N. Health monitoring and prognosis of electric vehicle motor using intelligent-digital twin. IET Electr. Power Appl. 2019, 13, 1328–1335. [Google Scholar] [CrossRef]
- Brandtstaedter, H.; Ludwig, C.; Hubner, L.; Tsouchnika, E.; Jungiewicz, A.; Wever, U. Digital Twins for Large Electric Drive Trains. In Proceedings of the 2018 Petroleum and Chemical Industry Conference Europe (PCIC Europe), Antwerp, Belgium, 5–7 June 2018; Volume 2018. [Google Scholar] [CrossRef]
- Zaccaria, V.; Stenfelt, M.; Aslanidou, I.; Kyprianidis, K.G. Fleet monitoring and diagnostics framework based on digital twin of aero-engines. Turbo Expo Power Land Sea Air 2018, 6, V006T05A021. [Google Scholar] [CrossRef]
- Talkhestani, B.A.; Jung, T.; Lindemann, B.; Sahlab, N.; Jazdi, N.; Schloegl, W.; Weyrich, M. An architecture of an intelligent digital twin in a cyber-physical production system. at-Automatisierungstechnik 2019, 67, 762–782. [Google Scholar] [CrossRef] [Green Version]
- Guan, P.; Huang, J.; Anvar, A.; Casey, M.B.; Fisher, C.L.; You, S.; Neumann, U. Multi-View 3D Object Recognition from a Point Cloud and Change Detection. US Patent 9,619,691, 11 April 2017. [Google Scholar]
- Răileanu, S.; Borangiu, T.; Ivănescu, N.; Morariu, O.; Anton, F. Integrating the digital twin of a shop floor conveyor in the manufacturing control system. In Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future, Proceedings of the SOHOMA 2019 9, Valencia, Spain, 3–4 October 2019; Springer: Cham, Switzerland, 2020; pp. 134–145. [Google Scholar]
- Dong, M.; Peng, Y. Equipment PHM using non-stationary segmental hidden semi-Markov model. Robot. Comput.-Integr. Manuf. 2011, 27, 581–590. [Google Scholar] [CrossRef]
- Zhang, H.; Kang, R.; Pecht, M. A hybrid prognostics and health management approach for condition-based maintenance. In Proceedings of the 2009 IEEE International Conference on Industrial Engineering and Engineering Management, Hong Kong, China, 8–11 December 2009; IEEE: New York, NY, USA, 2009; pp. 1165–1169. [Google Scholar]
- Tao, F.; Cheng, J.; Qi, Q.; Zhang, M.; Zhang, H.; Sui, F. Digital twin-driven product design, manufacturing and service with big data. Int. J. Adv. Manuf. Technol. 2018, 94, 3563–3576. [Google Scholar] [CrossRef]
- Adamenko, D.; Kunnen, S.; Pluhnau, R.; Loibl, A.; Nagarajah, A. Review and comparison of the methods of designing the Digital Twin. Procedia CIRP 2020, 91, 27–32. [Google Scholar] [CrossRef]
- Lei, Y.; Jia, F.; Lin, J.; Xing, S.; Ding, S.X. An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data. IEEE Trans. Ind. Electron. 2016, 63, 3137–3147. [Google Scholar] [CrossRef]
- Zhang, C.; He, Y.; Yuan, L.; Xiang, S. Analog circuit incipient fault diagnosis method using DBN based features extraction. IEEE Access 2018, 6, 23053–23064. [Google Scholar] [CrossRef]
- Wang, J.; Xie, J.; Zhao, R.; Zhang, L.; Duan, L. Multisensory fusion based virtual tool wear sensing for ubiquitous manufacturing. Robot. Comput.-Integr. Manuf. 2017, 45, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Zhang, Y.; Xu, M. Reliability-based maintenance optimization under imperfect predictive maintenance. Chin. J. Mech. Eng. 2012, 25, 160–165. [Google Scholar] [CrossRef]
- Lei, Y.; Li, N.; Gontarz, S.; Lin, J.; Radkowski, S.; Dybala, J. A Model-Based Method for Remaining Useful Life Prediction of Machinery. IEEE Trans. Reliab. 2016, 65, 1314–1326. [Google Scholar] [CrossRef]
- Yu, J.; Liu, P.; Li, Z. Hybrid modelling and digital twin development of a steam turbine control stage for online performance monitoring. Renew. Sustain. Energy Rev. 2020, 133, 110077. [Google Scholar] [CrossRef]
- Biggio, L.; Kastanis, I. Prognostics and health management of industrial assets: Current progress and road ahead. Front. Artif. Intell. 2020, 3, 578613. [Google Scholar] [CrossRef] [PubMed]
Year of Publication | DT in FM | Publications |
---|---|---|
2022 | 18 | [15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32] |
2021 | 32 | [33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,60,61] |
2020 | 6 | [62,63,64,65,66,67] |
2019 | 4 | [68,69,70,71] |
2018 | 2 | [72,73] |
Total | 59 |
PY | Ref. | Scope | Industry | Application | Prediction Method | Proposed Algorithm | Performance |
---|---|---|---|---|---|---|---|
2021 | [49] | Equipment | Manufacturing | Deep Groove Ball Bearing | Data-Driven | Detail Parameter | r = 0.79, p < 0.05 |
2021 | [22] | Equipment | Industrial | Cylindrical Rolling Bearing | Hybrid | Strict Feedback DT and ML | Acc: 97.13% |
2021 | [18] | Equipment | Aviation | Turbofan Engine | Hybrid | FOS-Based ARMA | %VAF = 99.9% |
2021 | [33] | Equipment | Energy | Switchgear Cabinet | Data-Driven | Random Forest Algorithm | Acc: 97% |
2021 | [34] | Equipment | Transportation | Railway Point Machine | Data-Driven | Current Curve Diagnosis | N/A |
2022 | [17] | Equipment | Maritime | Diesel Engine | Data-Driven | Unified Digital System | %Error = 1.1% |
2022 | [57] | Equipment | Automotive | Battery Packs | Hybrid | OBD Data to Cloud-Based DT | CI = 50% |
2021 | [26] | System | Manufacturing | Assembly Line Robots | Data-Driven | Structural Intervention | SHD Score = 9 |
2021 | [20] | System | Energy | Microgrid | Data-Driven | Connected Neural Networks | Acc: 95% |
2021 | [16] | System | Nuclear | High-Pressure Feedwater System | Model-Based | Mass Balanced Virtual Sensors | N/A |
2022 | [42] | System | Energy | Power-Grid Equipment | Hybrid | N/A | N/A |
2022 | [65] | System | Energy | Smart Building | Model-Based | Prototype Validation | Small FI Window = 2 ms |
2022 | [32] | System | Construction | Smart Building | Hybrid | BoW-Based Feature Extraction and Selection | TPRs: fault a = 63.8% fault b = 61.4% fault c = 53.9% fault d = 68.7% fault e = 70.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bofill, J.; Abisado, M.; Villaverde, J.; Sampedro, G.A. Exploring Digital Twin-Based Fault Monitoring: Challenges and Opportunities. Sensors 2023, 23, 7087. https://doi.org/10.3390/s23167087
Bofill J, Abisado M, Villaverde J, Sampedro GA. Exploring Digital Twin-Based Fault Monitoring: Challenges and Opportunities. Sensors. 2023; 23(16):7087. https://doi.org/10.3390/s23167087
Chicago/Turabian StyleBofill, Jherson, Mideth Abisado, Jocelyn Villaverde, and Gabriel Avelino Sampedro. 2023. "Exploring Digital Twin-Based Fault Monitoring: Challenges and Opportunities" Sensors 23, no. 16: 7087. https://doi.org/10.3390/s23167087
APA StyleBofill, J., Abisado, M., Villaverde, J., & Sampedro, G. A. (2023). Exploring Digital Twin-Based Fault Monitoring: Challenges and Opportunities. Sensors, 23(16), 7087. https://doi.org/10.3390/s23167087