Development a Low-Cost Wireless Smart Meter with Power Quality Measurement for Smart Grid Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Voltage Conditioning Circuit
2.2. Current Conditioning Circuit
2.3. Voltage and Current Zero-Crossing Circuit
2.4. Microcontroller ESP32
3. Prototyping
4. Calibration and Standardization
4.1. Calibration Platform
- A three-phase voltage regulator;
- Cables;
- Equivalent resistors of 33.33 ohms, with a power of 900 watts per phase;
- Three 5 amp output current transformers;
- Two secure digital cards;
- Multimeter;
- CW500 energy analyzer.
4.2. A Performance Calibration Using the Intelligent Meter
- Detecting power quality problems;
- Evaluating energy efficiency;
- Diagnosing faults;
- Analyzing the performance of the electrical system.
5. Results and Discussion
5.1. System Analysis in Practice
5.1.1. Results and Field Test Analysis
5.1.2. Power, Power Factor, Frequency, and Harmonic Results in Field Test
5.2. Systems Analysis Theory
6. Conclusions and Suggestions for Future Work
6.1. System Analysis in Practice
6.2. System Analysis Theory
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IEA | International Energy Agency |
TWh | Terawatt hour |
SG | Smart Grids |
IoT | Internet of Things |
RFID | Radio Frequency Identification |
ADC | Analog-to-Digital Converter |
DC | Direct Current |
V | Voltage |
Vpp | Peak-to-Peak Voltage |
mW | Milliwatt |
Vrms | Root Mean Square Voltage |
A | Ampere |
Wi-Fi | Wireless Fidelity |
ULP | Ultra-Low Power |
SAR | Successive Approximation Register |
MHz | Megahertz |
CPU | Central Processing Unit |
Vdc | Volts Direct Current |
dB | Decibel |
mV | Millivolt |
DSP | Digital Signal Processing |
PGA | Programmable Gain Amplifier |
ppm/°C | Parts per million per degree centigrade |
IC | Integrated Circuit |
AC/DC | Alternating Current/Direct Current |
EEPROM | Electrically Erasable Programmable Read-Only Memory |
EXL | Cirrus Logic’s EXL Core™ technology |
RMS | Root Mean Square |
UART | Universal Asynchronous Receiver/Transmitter |
I/O | Input/Output |
2D | 2-Dimensional |
3D | 3-Dimensional |
PCB | Printed Circuit Board |
mil | Unit of measurement equal to one thousandth of an inch |
SD | Secure Digital |
PF | Power Factor |
CT | Current Transformer |
IR | R-phase Current |
IS | S-phase Current |
IT | T-phase Current |
References
- Institute, E. Primary Energy Consumption. 2023. Available online: https://www.iea.org/data-and-statistics/data-tools/energy-statistics-data-browser?country=WORLD&fuel=Energy%5C%20supply (accessed on 1 May 2023).
- Minh, Q.N.; Nguyen, V.H.; Quy, V.K.; Ngoc, L.A.; Chehri, A.; Jeon, G. Edge Computing for IoT-Enabled Smart Grid: The Future of Energy. Energies 2022, 15, 6140. [Google Scholar] [CrossRef]
- Amin, M. The smart-grid solution. Nature 2013, 499, 145–147. [Google Scholar] [CrossRef] [PubMed]
- Site, A.D.W. ADE9000 Data Sheet. In High Performance, Multiphase Energy, and Power Quality Monitoring IC; Analog Devices, Inc.: Norwood, MA, USA, 2020; Available online: https://www.analog.com/media/en/technical-documentation/data-sheets/ADE9000.pdf (accessed on 1 May 2023).
- Site, M. MCP39F511 Data Sheet. MCP32F5XX Power Monitoring IC Family. Available online: https://www.microchip.com/en-us/product/MCP39F511 (accessed on 28 June 2023).
- Site, C.L. Two Channel Energy Measurement IC. CS548x/9x Family of High Performance Analog Front end Solutions for Energy Measurement. Available online: https://www.cirrus.com/products/cs5490/ (accessed on 28 June 2023).
- Tuballa, M.L.; Abundo, M.L. A review of the development of Smart Grid technologies. Renew. Sustain. Energy Rev. 2016, 59, 710–725. [Google Scholar] [CrossRef]
- Farhangi, H. The path of the smart grid. IEEE Power Energy Mag. 2009, 8, 18–28. [Google Scholar] [CrossRef]
- Moreno Escobar, J.J.; Morales Matamoros, O.; Tejeida Padilla, R.; Lina Reyes, I.; Quintana Espinosa, H. A comprehensive review on smart grids: Challenges and opportunities. Sensors 2021, 21, 6978. [Google Scholar] [CrossRef] [PubMed]
- Wollman, D.A.; FitzPatrick, G.; Boynton, P.A.; Nelson, T.L. NIST coordination of smart grid interoperability standards. In Proceedings of the CPEM 2010, Daejeon, Republic of Korea, 13–18 June 2010; pp. 531–532. [Google Scholar]
- Zheng, J.; Gao, D.W.; Lin, L. Smart meters in smart grid: An overview. In Proceedings of the 2013 IEEE Green Technologies Conference (GreenTech), Denver, CO, USA, 4–5 April 2013; pp. 57–64. [Google Scholar]
- Barai, G.R.; Krishnan, S.; Venkatesh, B. Smart metering and functionalities of smart meters in smart grid-a review. In Proceedings of the 2015 IEEE Electrical Power and Energy Conference (EPEC), London, ON, Canada, 26–28 October 2015; pp. 138–145. [Google Scholar]
- Bollen, M.H. Understanding power quality problems. In Voltage sags and Interruptions; IEEE Press: Piscataway, NJ, USA, 2000. [Google Scholar]
- Bollen, M.H.; Gu, I.Y. Signal Processing of Power Quality Disturbances; John Wiley & Sons: New York, NY, USA, 2006. [Google Scholar]
- De Energia Elétrica, A.N. QC–Qualidade de Energia Elétrica. 2023. Available online: https://www.gov.br/aneel/pt-br/assuntos/pesquisa-e-desenvolvimento/temas-para-investimentos/qc (accessed on 29 June 2023).
- The California Public Utilities Commission. The Benefits of Smart Meters. 2023. Available online: https://www.cpuc.ca.gov/industries-and-topics/electrical-energy/infrastructure/the-benefits-of-smart-meters (accessed on 28 June 2023).
- European Commission. Smart Grids and Meters. 2023. Available online: https://energy.ec.europa.eu/topics/markets-and-consumers/smart-grids-and-meters_en (accessed on 28 June 2023).
- Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787–2805. Available online: https://www.cs.mun.ca/courses/cs6910/IoT-Survey-Atzori-2010.pdf (accessed on 22 March 2023). [CrossRef]
- González-Zamar, M.D.; Abad-Segura, E. Visual and Artistic Effects of an IoT System in Smart Cities: Research Flow. IoT 2020, 1, 161–179. [Google Scholar] [CrossRef]
- Depuru, S.S.S.R.; Wang, L.; Devabhaktuni, V.; Gudi, N. Smart meters for power grid—Challenges, issues, advantages and status. In Proceedings of the 2011 IEEE/PES Power Systems Conference and Exposition, Phoenix, AZ, USA, 20–23 March 2011; pp. 1–7. [Google Scholar]
- Sun, Q.; Li, H.; Ma, Z.; Wang, C.; Campillo, J.; Zhang, Q.; Wallin, F.; Guo, J. A comprehensive review of smart energy meters in intelligent energy networks. IEEE Internet Things J. 2015, 3, 464–479. [Google Scholar] [CrossRef]
- Irfan, A.; Hassan, S.Z.; Ahmed, R.; Khanam, S.; Khanam, S. IoT Based Smart Meter. In Proceedings of the 2019 International Conference on Innovative Computing (ICIC), Lahore, Pakistan, 1–2 November 2019; pp. 1–5. [Google Scholar]
- Burger, C.; Weinmann, J.; Kuhlmann, A. Are our smart meters smart enough? World Econ. Forum 2019. Available online: https://www.weforum.org/agenda/2019/09/are-our-smart-meters-smart-enough/ (accessed on 16 March 2023).
- Cominola, A.; Giuliani, M.; Castelletti, A.; Fraternali, P.; Gonzalez, S.L.H.; Herrero, J.C.G.; Novak, J.; Rizzoli, A.E. Long-term water conservation is fostered by smart meter-based feedback and digital user engagement. NPJ Clean Water 2021, 4, 29. Available online: https://www.nature.com/articles/s41545-021-00119-0 (accessed on 16 March 2023). [CrossRef]
- De Dominicis, S.; Sokoloski, R.; Jaeger, C.M.; Schultz, P.W. Making the smart meter social promotes long-term energy conservation. Palgrave Commun. 2019, 5, 51. Available online: https://www.nature.com/articles/s41599-019-0254-5 (accessed on 16 March 2023). [CrossRef]
- Oleskovicz, M.; Coury, D.V.; Carneiro, A.A.; Arruda, E.F.; Delmont, F.O.; Souza, S.A. Estudo comparativo de ferramentas modernas de análise aplicadas à qualidade da energia elétrica. Rev. Controle Automação 2006, 17, 331–341. Available online: https://www.scielo.br/j/ca/a/JD8gvr9g4cjSCzwCms44VLG/?format=pdf&lang=pt (accessed on 23 March 2023). [CrossRef]
- Site, A.D.W. Using Guide ADE9000. ADE9000 Arduino-Compatible Energy and Power Quality Measurement Shield. Available online: https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/EVAL-ADE9000-Shield.html#eb-overview (accessed on 3 June 2023).
- May, C. Passive Circuit Analysis with LTspice®; Springer: Berlin, Germany, 2020. [Google Scholar]
- Ibrahim, D. The Complete ESP32 Projects Guide: 59 Experiments with Arduino IDE and Python; Elektor: Aachen, Germany, 2019. [Google Scholar]
- ESPRESSIF. ESP32-WROOM32 Datasheet. 2019. Available online: https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf (accessed on 8 March 2023).
- Kolban, N. Kolban’s Book on ESP32; Leanpub: Victoria, BC, USA, 2018. [Google Scholar]
- IPC-2221A; Generic Standard on Printed Board Design. 1998. Available online: https://www-eng.lbl.gov/~shuman/NEXT/CURRENT_DESIGN/TP/MATERIALS/IPC-2221A(L).pdf (accessed on 8 March 2023).
- Yokogawa Corporation of America. CW500 Power Quality Analyzer; Yokogawa: Tokyo, Japan, 2016; Available online: https://www.yokogawa.com/pdf/provide/E/GW/Bulletin/0000029902/0/BUCW500-01EN.pdf (accessed on 8 March 2023).
- Hojabri, M.; Dersch, U.; Papaemmanouil, A.; Bosshart, P. A Comprehensive Survey on Phasor Measurement Unit Applications in Distribution Systems. Energies 2019, 12, 4552. [Google Scholar] [CrossRef]
- Velychko, O.; Isaiev, V. Measurement of instantaneous and average values of phase angle using precision voltmeter. ARPN J. Eng. Appl. Sci. 2019, 14, 2621–2629. [Google Scholar]
Attenuation | Voltage Range |
---|---|
0 dB | 100–950 mV |
2.5 dB | 100–150 mV |
6 dB | 150–1750 mV |
11 dB | 150–2450 mV |
Components | Amount | Dollar | Sum |
---|---|---|---|
AMS1117-3.3 | 1 | $0.30 | $0.30 |
Resistor 10k 1/8 W | 3 | $0.04 | $0.12 |
Resistor 680k 1/8 W | 6 | $0.04 | $0.24 |
Resistor 1k 1/8 W | 5 | $0.04 | $0.20 |
Diode 1N4732A | 6 | $0.03 | $0.18 |
Resistor 2 | 12 | $0.17 | $2.04 |
Capacitor 22 uF | 3 | $0.05 | $0.75 |
Capacitor 22 nF | 6 | $0.05 | $0.30 |
Capacitor 100 nF | 10 | $0.06 | $0.60 |
Diode 1N4148 | 6 | $0.03 | $0.18 |
Resitor 3k3 | 5 | $0.04 | $0.20 |
LEDS | 3 | $0.06 | $0.18 |
Pin Header Socket | 1 | $0.80 | $0.80 |
RST | 1 | $0.14 | $0.14 |
ESP32-WROOM-32DC | 1 | $12.00 | $12.00 |
LM324A-CORRENTE | 1 | $0.23 | $0.23 |
LM324A-TENSAO | 1 | $0.23 | $0.23 |
Capacitor 100 uF | 1 | $0.18 | $0.18 |
HLK-PM01 5 v 600 mA | 1 | $5.80 | $5.80 |
PCB | 1 | $1.60 | $1.60 |
CASE 3D | 1 | $5.00 | $5.00 |
Conn 2EDGRC-5.0 M 6P 90 | 1 | $0.73 | $0.73 |
Conn 2EDGK-5.0 F 6P | 1 | $1.18 | $1.18 |
Conn 2EDGRC-5.0 M 4P 90 | 1 | $0.53 | $0.53 |
Conn 2EDGK-5.0 F4P | 1 | $1.06 | $1.06 |
Current Transformer | 3 | $16.00 | $48.00 |
Total | $82.77 |
Features | Fluke 1770 Series | CW500 | Smart Meter |
---|---|---|---|
Measuring power and power quality parameters | X | X | X |
Power directly from measurement circuit | X | - | X |
Data acquisition offline | X | X | X |
Data acquisition online | X | - | X |
High-speed voltage transient capture | X | - | - |
Display for viewing data | X | X | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, E.L.d.; Marques, L.A.d.A.; Lima, I.d.S.F.d.; Neves, A.B.M.; Cunha, E.N.; Kreutz, M.E.; Neto, A.J.V. Development a Low-Cost Wireless Smart Meter with Power Quality Measurement for Smart Grid Applications. Sensors 2023, 23, 7210. https://doi.org/10.3390/s23167210
Sousa ELd, Marques LAdA, Lima IdSFd, Neves ABM, Cunha EN, Kreutz ME, Neto AJV. Development a Low-Cost Wireless Smart Meter with Power Quality Measurement for Smart Grid Applications. Sensors. 2023; 23(16):7210. https://doi.org/10.3390/s23167210
Chicago/Turabian StyleSousa, Ewerton L. de, Leonardo A. de Aquino Marques, Israel da S. Felix de Lima, Ana Beatriz M. Neves, Eduardo Nogueira Cunha, Márcio Eduardo Kreutz, and Augusto José V. Neto. 2023. "Development a Low-Cost Wireless Smart Meter with Power Quality Measurement for Smart Grid Applications" Sensors 23, no. 16: 7210. https://doi.org/10.3390/s23167210