Machine Learning as a Strategic Tool for Helping Cocoa Farmers in Côte D’Ivoire
Abstract
:1. Introduction
1.1. The Complex System That Causes and Is Implied in Anthropological Climate Change
- the ACC will increase drought in some areas and extreme rainfall in other areas of the world, affecting agricultural production, the ocean economy, and the security of food supplies around the world;
- it will have effects on the water level by deeply involving the coastal areas and their cities;
- it will raise the temperature averages 1–4 degrees upward, “shifting” warm climatic zones northward, altering marine habitat and coastal economies, changing land needs and local habits, inducing tropical rains, dramatically reducing the extent of glaciers, lake levels, and the natural water reserves;
- it will affect the transmigration of animals and insects to areas where they were not normally present.
- anthropogenic activity that changes the land cover and land management;
- indirect effects of anthropogenic activity, such as carbon dioxide (CO2), fertilization, and nitrogen deposition;
- natural climate variability and natural disturbances (e.g., wildfires, windrow, disease).
1.2. The Motivations of the Case Study
1.3. Technology and Machine Learning Methods at the Service of the Problem
1.4. Related Works in Smart Agriculture and Terrain Monitoring
2. Materials and Methods
2.1. Open-Source Strategic Tools
Pervasive IoT Systems
- Soil moisture sensors: These sensors measure the moisture content in the soil, allowing farmers to determine the optimal time for irrigation. By ensuring the right amount of water is provided to the plants, farmers can prevent over-watering or under-watering, leading to a better crop yield and water conservation [72].
- Temperature and humidity sensors: Monitoring temperature and humidity levels is crucial for crop health. Arduino sensors can help farmers assess the environmental conditions and make adjustments accordingly, such as turning on irrigation systems or activating ventilation in greenhouses [73].
- Light sensors: Light sensors help farmers analyze the intensity of sunlight reaching the crops. This information is valuable in determining suitable planting locations, optimizing crop layouts, and even deciding the best time for harvesting [74].
- Weather stations: Arduino-based weather stations can collect data on various weather parameters such as temperature, humidity, wind speed, and precipitation. Farmers can use these data to anticipate weather changes and prepare for potential adverse conditions [75].
- Crop health monitoring: Sensors such as pH sensors and nutrient level sensors can provide insights into the health of the crops and soil. Farmers can adjust fertilization and nutrient application based on real-time data, leading to healthier plants and better yields [76].
- Pest detection: Some Arduino sensors can identify pests and diseases early on by detecting specific patterns or changes in the environment caused by these issues. This helps farmers implement targeted pest control measures, reducing the need for excessive pesticide use [77].
- Automated irrigation systems: By integrating Arduino sensors with irrigation systems, farmers can create automated setups that respond to real-time data. These systems can turn on or off the irrigation based on soil moisture levels, weather conditions, and crop requirements [78].
- Crop growth monitoring: Sensors such as ultrasonic distance sensors or infrared sensors can measure crop height and growth rate. This information allows farmers to track the development of their crops and make timely decisions regarding pruning or harvesting [76].
- Livestock monitoring: In addition to crop-related applications, Arduino sensors can also be used to monitor the health and behavior of livestock. For example, sensors can track the body temperature of animals, detect estrus in cattle, or monitor feeding and drinking habits [79].
- Automated greenhouse systems: Arduino sensors can be integrated into smart greenhouse systems, controlling temperature, humidity, and ventilation automatically to create an optimal environment for plant growth [80].
2.2. The Pipeline of Knowledge Discovery from Data
2.3. Task 1: Cocoa Pods Classification Model
2.3.1. Data
2.3.2. Model
2.4. Task 2: GRACE Prediction Model
2.4.1. Data
2.4.2. Data Preprocessing
2.4.3. Model
- , when models took in input of only the 10 features of ERA5, listed in Table 1 at time t, i.e., an image with 10 channels;
- , where stands for the number of additional channels, each of them made by a delayed GRACE data image. Hence, for the input image had 12 channels, 10 of which were ERA5 variables at time t, one was GRACE data at time t, and the last was GRACE data at time , all trying to predict GRACE at time .
3. Results
3.1. Task 1: Results
3.2. Task 2: Results
4. Discussion
4.1. Task 1
4.2. Task 2
4.3. Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shukla, P.R.; Skea, J.; Calvo Buendia, E.; Masson-Delmotte, V.; Pörtner, H.O.; Roberts, D.; Zhai, P.; Slade, R.; Connors, S.; Van Diemen, R.; et al. IPCC, 2019: Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- IPCC. Summary for Policymakers. In Climate Change 2023: Synthesis Report; Contribution ofWorking Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team; Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 1–34. [Google Scholar] [CrossRef]
- Ortiz-Bobea, A.; Ault, T.R.; Carrillo, C.M.; Chambers, R.G.; Lobell, D.B. Anthropogenic climate change has slowed global agricultural productivity growth. Nat. Clim. Change 2021, 11, 306–312. [Google Scholar] [CrossRef]
- Sickles, R.; Zelenyuk, V. Measurement of Productivity and Efficiency; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar] [CrossRef]
- Kakaoplattform. 2023. Available online: https://www.kakaoplattform.ch/about-cocoa/cocoa-facts-and-figures (accessed on 29 July 2023).
- Polong, F.; Deng, K.; Pham, Q.B.; Linh, N.T.T.; Abba, S.I.; Ahmed, A.N.; Anh, D.T.; Khedher, K.M.; El-Shafie, A. Separation and attribution of impacts of changes in land use and climate on hydrological processes. Theor. Appl. Climatol. 2023, 151, 1337–1353. [Google Scholar] [CrossRef]
- Lai, V.; Huang, Y.; Koo, C.; Najah Ahmed, A.; El-Shafie, A. Conceptual Sim-Heuristic optimization algorithm to evaluate the climate impact on reservoir operations. J. Hydrol. 2022, 614, 128530. [Google Scholar] [CrossRef]
- Ehteram, M.; Ahmed, A.N.; Chow, M.F.; Latif, S.D.; Chau, K.w.; Chong, K.L.; El-Shafie, A. Optimal operation of hydropower reservoirs under climate change. Environ. Dev. Sustain. 2022. [Google Scholar] [CrossRef]
- Gosset, M.; Dibi-Anoh, P.A.; Schumann, G.; Hostache, R.; Paris, A.; Zahiri, E.P.; Kacou, M.; Gal, L. Hydrometeorological Extreme Events in Africa: The Role of Satellite Observations for Monitoring Pluvial and Fluvial Flood Risk. Surv. Geophys. 2023, 44, 197–223. [Google Scholar] [CrossRef]
- Caretta, M.; Mukherji, A.; Arfanuzzaman, M.; Betts, R.; Gelfan, A.; Hirabayashi, Y.; Lissner, T.; Liu, J.; Lopez Gunn, E.; Morgan, R.; et al. Water. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 551–712. [Google Scholar] [CrossRef]
- UNDRR; CIMA. Côte d’Ivoire Disaster Risk Profile; United Nations Office for Disaster Risk Reduction and CIMA Research Foundation: Geneva, Switzerland, 2019. [Google Scholar]
- Bank, W. Côte d’Ivoire—Country Economic Memorandum: Sustaining the Growth Acceleration (English); World Bank: Washington, DC, USA, 2021. [Google Scholar]
- Dibi-Anoh, P.A.; Koné, M.; Gerdener, H.; Kusche, J.; N’Da, C.K. Hydrometeorological Extreme Events in West Africa: Droughts. Surv. Geophys. 2023, 44, 173–195. [Google Scholar] [CrossRef]
- Vaissaire, J. Événements climatiques extrêmes Réduire les vulnérabilités des systèmes écologiques et sociaux. Sous la direction de Henri Décamps, Institut de France-Académie des Sciences-2010. Bull. l’Acad. Vét. Fr. 2011, 164, 74–75. [Google Scholar]
- Masih, I.; Maskey, S.; Mussá, F.E.F.; Trambauer, P. A review of droughts on the African continent: A geospatial and long-term perspective. Hydrol. Earth Syst. Sci. 2014, 18, 3635–3649. [Google Scholar] [CrossRef]
- Quesada-Montano, B.; Wetterhall, F.; Westerberg, I.K.; Hidalgo, H.G.; Halldin, S. Characterising droughts in Central America with uncertain hydro-meteorological data. Theor. Appl. Climatol. 2019, 137, 2125–2138. [Google Scholar] [CrossRef]
- Landerer, F.W.; Flechtner, F.M.; Save, H.; Webb, F.H.; Bandikova, T.; Bertiger, W.I.; Bettadpur, S.V.; Byun, S.H.; Dahle, C.; Dobslaw, H.; et al. Extending the Global Mass Change Data Record: GRACE Follow-On Instrument and Science Data Performance. Geophys. Res. Lett. 2020, 47, e2020GL088306. [Google Scholar] [CrossRef]
- Frappart, F.; Ramillien, G. Monitoring groundwater storage changes using the Gravity Recovery and Climate Experiment (GRACE) satellite mission: A review. Remote Sens. 2018, 10, 829. [Google Scholar] [CrossRef]
- Humphrey, V.; Gudmundsson, L. GRACE-REC: A reconstruction of climate-driven water storage changes over the last century. Earth Syst. Sci. Data 2019, 11, 1153–1170. [Google Scholar] [CrossRef]
- Hosseini-Moghari, S.M.; Araghinejad, S.; Ebrahimi, K.; Tang, Q.; AghaKouchak, A. Using GRACE satellite observations for separating meteorological variability from anthropogenic impacts on water availability. Sci. Rep. 2020, 10, 15098. [Google Scholar] [CrossRef] [PubMed]
- Solander, K.C.; Reager, J.T.; Wada, Y.; Famiglietti, J.S.; Middleton, R.S. GRACE satellite observations reveal the severity of recent water over-consumption in the United States. Sci. Rep. 2017, 7, 8723. [Google Scholar] [CrossRef]
- Pretty, J. Agricultural sustainability: Concepts, principles and evidence. In Philosophical Transactions of the Royal Society; The Royal Society: London, UK, 2008; pp. 447–465. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Monthly Averaged Data on Single Levels from 1940 to Present; Technical Report; Copernicus Climate Change Service (C3S) Climate Data Store (CDS): Reading, UK, 2023. [Google Scholar] [CrossRef]
- Available online: www.chocofair.org (accessed on 31 July 2023).
- Communauté Abel, Grand Bassam, Côte d’Ivoire. 2023. Available online: http://www.communauteabel.org/ (accessed on 31 July 2023).
- Gruppo Abele, Turin, Italy, Choco+ Intiative. 2023. Available online: https://www.gruppoabele.org/it-schede-1639-choco (accessed on 31 July 2023).
- Pinardi, S.; Salis, M.; Sartor, G.; Meo, R. EU-Africa: Digital and Social Questions in a Multicultural Agroecological Transition for the Cocoa Production in Africa. Soc. Sci. 2023, 12, 398. [Google Scholar] [CrossRef]
- Ruf, F.; Schroth, G.; Doffangui, K. Climate change, cocoa migrations and deforestation in West Africa: What does the past tell us about the future? Sustain. Sci. 2015, 10, 101–111. [Google Scholar] [CrossRef]
- Barima, Y.S.S.; Kouakou, A.T.M.; Bamba, I.; Sangne, Y.C.; Godron, M.; Andrieu, J.; Bogaert, J. Cocoa crops are destroying the forest reserves of the classified forest of Haut-Sassandra (Ivory Coast). Glob. Ecol. Conserv. 2016, 8, 85–98. [Google Scholar] [CrossRef]
- Yao Sadaiou Sabas, B.; Gislain Danmo, K.; Akoua Tamia Madeleine, K.; Jan, B. Cocoa Production and Forest Dynamics in Ivory Coast from 1985 to 2019. Land 2020, 9, 524. [Google Scholar] [CrossRef]
- Abu, I.O.; Szantoi, Z.; Brink, A.; Robuchon, M.; Thiel, M. Detecting cocoa plantations in Côte d’Ivoire and Ghana and their implications on protected areas. Ecol. Indic. 2021, 129, 107863. [Google Scholar] [CrossRef]
- Kalischek, N.; Lang, N.; Renier, C.; Daudt, R.C.; Addoah, T.; Thompson, W.; Blaser-Hart, W.J.; Garrett, R.; Schindler, K.; Wegner, J.D. Cocoa plantations are associated with deforestation in Côte d’Ivoire and Ghana. Nat. Food 2023, 4, 384–393. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Vancutsem, C.; Achard, F.; Pekel, J.F.; Vieilledent, G.; Carboni, S.; Simonetti, D.; Gallego, J.; Aragão, L.E.O.C.; Nasi, R. Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Sci. Adv. 2021, 7, eabe1603. [Google Scholar] [CrossRef]
- Achard, F.; Beuchle, R.; Mayaux, P.; Stibig, H.J.; Bodart, C.; Brink, A.; Carboni, S.; Desclée, B.; Donnay, F.; Eva, H.D.; et al. Determination of tropical deforestation rates and related carbon losses from 1990 to 2010. Glob. Change Biol. 2014, 20, 2540–2554. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture 2020. Overcoming Water Challenges in Agriculture; FAO: Rome, Italy, 2020; 289p. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Technical Report; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Dhakal, S.; Minx, J.; Toth, F.L. Climate Change 2022—Mitigation of Climate Change Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Technical Report; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar] [CrossRef]
- Hong, C.; Burney, J.A.; Pongratz, J.; Nabel, J.E.M.S.; Mueller, N.D.; Jackson, R.B.; Davis, S.J. Global and regional drivers of land-use emissions in 1961–2017. Nature 2021, 589, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Dalgaard, T.; Hutchings, N.; Porter, J. Agroecology, scaling and interdisciplinarity. Agric. Ecosyst. Environ. 2003, 100, 39–51. [Google Scholar] [CrossRef]
- CAMS Reanalysis Data Set of Atmospheric Composition (AC) Produced by the Copernicus Atmosphere Monitoring Service. Period 2003–June 2022. 2023. Available online: https://www.ecmwf.int/en/forecasts/dataset/cams-global-reanalysis (accessed on 29 August 2023).
- Pierce, F.J.; Nowak, P. Aspects of Precision Agriculture. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 1999; Volume 67, pp. 1–85. [Google Scholar] [CrossRef]
- Wezel, A.; Herren, B.G.; Kerr, R.B.; Barrios, E.; Gonçalves, A.; Sinclair, F. Agroecological principles and elements and their implications for transitioning to sustainable food systems. A review. Agron. Sustain. Dev. 2020, 40, 40. [Google Scholar] [CrossRef]
- Duncan, E.; Glaros, A.; Ross, D.Z.; Nost, E. New but for whom? Discourses of innovation in precision agriculture. Agric. Hum. Values 2021, 38, 1181–1199. [Google Scholar] [CrossRef]
- Aljazeera. Ivory Coast Battles Chocolate Companies to Improve Farmers’ Lives. 2022. Available online: https://www.aljazeera.com/features/2022/12/22/ivory-coast-battles-chocolate-companies-to-improve-farmers-lives (accessed on 28 August 2023).
- Gohoun, B. Sustainable Cocoa Farming in Côte d’Ivoire: UN Deputy Chief Notes Significant Progress and Calls for Greater International Support. Available online: https://unsdg.un.org/latest/stories/sustainable-cocoa-farming-cote-divoire-un-deputy-chief-notes-significant-progress (accessed on 28 August 2023).
- Espinoza-Lozano, F.; Amaya-Márquez, D.; Pinto, C.M.; Villavicencio-Vásquez, M.; Sosa del Castillo, D.; Pérez-Martínez, S. Multiple Introductions of Moniliophthora roreri from the Amazon to the Pacific Region in Ecuador and Shared High Azoxystrobin Sensitivity. Agronomy 2022, 12, 1119. [Google Scholar] [CrossRef]
- Akrofi, A. Phytophthora megakarya: A review on its status as a pathogen on cacao in West Africa. Afr. Crop Sci. J. 2015, 23, 67–87. [Google Scholar]
- Geels, F.W. Technological transitions as evolutionary reconfiguration processes: A multi-level perspective and a case-study. Res. Policy 2002, 31, 1257–1274. [Google Scholar] [CrossRef]
- Schot, J.; Geels, F.W. Strategic niche management and sustainable innovation journeys: Theory, findings, research agenda, and policy. Technol. Anal. Strateg. Manag. 2008, 20, 537–554. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 779–788. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Theben, A.; Gunderson, L.; López-Forées, L.; Misuraca, G.; Lipiáñez-Villaneuva, F. Challenges and Limits of an Open Source Approach to Artificial Intelligence. Policy Department for Economic, Scientific and Quality of Life Policies Directorate-General for Internal Policies, Special Committee on Artificial Intelligence in a Digital Age, EU Parliament. 2021. Available online: https://www.europarl.europa.eu/RegData/etudes/STUD/2021/662908/IPOL_STU(2021)662908_EN.pdf (accessed on 29 August 2023).
- GITHUB Platform, with an Open Source Section and Social Good Projects, Today Equipped with Copilot, an AI-Based Tool in Support to Developers. Available online: https://github.blog/category/open-source/ (accessed on 29 August 2023).
- Joinup Project, for Interoperable Europe and Interoperable Solutions. Available online: https://joinup.ec.europa.eu (accessed on 29 August 2023).
- Apache Community. Available online: https://httpd.apache.org (accessed on 29 August 2023).
- Free Software Foundation. Available online: https://www.gnu.org (accessed on 29 August 2023).
- UC Irvine Machine Learning Repository. Available online: https://archive.ics.uci.edu/ (accessed on 29 August 2023).
- Kaggle: Level Up with the Largest AI & ML Community. Available online: https://www.kaggle.com/ (accessed on 19 May 2023).
- Tensorflow Platform. Available online: https://www.tensorflow.org (accessed on 29 August 2023).
- Deep Scalable Sparse Tensor Network Engine: An Amazon Developed Library for Building Deep Learning Machine Learning Models. Available online: https://github.com/amazon-archives/amazon-dsstne (accessed on 29 August 2023).
- Keras: Deep Learning API, in Python, Running on Top of the Machine Learning Platform TensorFlow. Available online: https://keras.io/ (accessed on 29 August 2023).
- OpenStack: The Most Widely Deployed Open Source Cloud Software in the World, a Set of Software Components that Provide Common Services for Cloud Infrastructure. Available online: https://www.openstack.org/ (accessed on 29 August 2023).
- OpenHPC: A Community-Based Effort Provides Tools, Documentation, and More to Accelerate Innovation and Broaden Access to HPC. Available online: https://opensource.com/article/17/11/openhpc (accessed on 29 August 2023).
- ML-Ops: The Best Open-Source MLOps Tools You Should Know. Available online: https://neptune.ai/blog/best-open-source-mlops-tools (accessed on 29 August 2023).
- Curate Better Data, Build Better Models with FiftyOne. Available online: https://voxel51.com/ (accessed on 29 August 2023).
- OpenCV Library: The World’s Largest Resource of Computer Vision. Available online: https://opencv.org/ (accessed on 29 August 2023).
- Open Source Innovation in Artificial Intelligence and Data. Available online: https://lfaidata.foundation (accessed on 29 August 2023).
- Apache Kafka: An Open-Source Distributed Event Streaming Platform for High-Performance Data Pipelines, Streaming Analytics, Data Integration, and Mission-Critical Applications. Available online: https://kafka.apache.org (accessed on 29 August 2023).
- InfluxDB: A Scalable Datastore for Metrics, Events, and Real-Time Analytics. Available online: https://github.com/influxdata/influxdb (accessed on 29 August 2023).
- Hamoodi, S.A.; Hamoodi, A.N.; Haydar, G.M. Automated irrigation system based on soil moisture using arduino board. Bull. Electr. Eng. Inform. 2020, 9, 870–876. [Google Scholar] [CrossRef]
- Mylonas, A.; Kazanci, O.B.; Andersen, R.K.; Olesen, B.W. Capabilities and limitations of wireless CO2, temperature and relative humidity sensors. Build. Environ. 2019, 154, 362–374. [Google Scholar] [CrossRef]
- Rosell-Polo, J.R.; Cheein, F.A.; Gregorio, E.; Andújar, D.; Puigdomènech, L.; Masip, J.; Escolà, A. Advances in structured light sensors applications in precision agriculture and livestock farming. Adv. Agron. 2015, 133, 71–112. [Google Scholar]
- Tanner, B.D. Automated weather stations. Remote Sens. Rev. 1990, 5, 73–98. [Google Scholar] [CrossRef]
- Pascual, R.L.; Sanchez, D.M.R.; Naces, D.L.E.; Nuñez, W.A. A Wireless Sensor Network using XBee for precision agriculture of sweet potatoes (Ipomoea batatas). In Proceedings of the 2015 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Cebu City, Philippines, 9–12 December 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Romero, C.; Teologo, A.; Nuesca, A.L. Arduino Rice Pest Trap using Laser Sensor. In Proceedings of the 2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Manila, Philippines, 28–30 November 2021; pp. 1–6. [Google Scholar]
- Kriti, T.; Bhatia, S. Automatic irrigation system using Arduino UNO. In Proceedings of the 2017 International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 15–16 June 2017. [Google Scholar]
- Frost, A.; Schofield, C.; Beaulah, S.; Mottram, T.; Lines, J.; Wathes, C. A review of livestock monitoring and the need for integrated systems. Comput. Electron. Agric. 1997, 17, 139–159. [Google Scholar] [CrossRef]
- Li, H.; Guo, Y.; Zhao, H.; Wang, Y.; Chow, D. Towards automated greenhouse: A state of the art review on greenhouse monitoring methods and technologies based on internet of things. Comput. Electron. Agric. 2021, 191, 106558. [Google Scholar] [CrossRef]
- Marelli, J.P.; Guest, D.I.; Bailey, B.A.; Evans, H.C.; Brown, J.K.; Junaid, M.; Barreto, R.W.; Lisboa, D.O.; Puig, A.S. Chocolate under threat from old and new cacao diseases. Phytopathology 2019, 109, 1331–1343. [Google Scholar] [CrossRef]
- Bastidas-Alva, R.A.; Cardenas, J.A.P.; Espinoza, K.S.B.; Nuñez, V.K.P.; Rivera, M.E.Q.; Huaytalla, J. Recognition and classification system for trinitario cocoa fruits according to their ripening stage based on the Yolo v5 algorithm. In Proceedings of the 2022 Asia Conference on Advanced Robotics, Automation, and Control Engineering (ARACE), Qingdao, China, 26–28 August 2022; pp. 138–142. [Google Scholar]
- Ko, K.; Jang, I.; Choi, J.H.; Lim, J.H.; Lee, D.U. Stochastic Decision Fusion of Convolutional Neural Networks for Tomato Ripeness Detection in Agricultural Sorting Systems. Sensors 2021, 21, 917. [Google Scholar] [CrossRef] [PubMed]
- MacEachern, C.B.; Esau, T.J.; Schumann, A.W.; Hennessy, P.J.; Zaman, Q.U. Detection of fruit maturity stage and yield estimation in wild blueberry using deep learning convolutional neural networks. Smart Agric. Technol. 2023, 3, 100099. [Google Scholar] [CrossRef]
- Baba, B.; Tamin, R.; Indrabayu; Areni, I.; Karim, H.A. Mobile Image Processing Application for Cacao’s Fruits Pest and Disease Attack Using Deep Learning Algorithm. ICIC Express Lett. 2020, 14, 1025–1032. [Google Scholar] [CrossRef]
- Chen, J.W.; Lin, W.J.; Cheng, H.J.; Hung, C.L.; Lin, C.Y.; Chen, S.P. A Smartphone-Based Application for Scale Pest Detection Using Multiple-Object Detection Methods. Electronics 2021, 10, 372. [Google Scholar] [CrossRef]
- Degu, M.Z.; Simegn, G.L. Smartphone based detection and classification of poultry diseases from chicken fecal images using deep learning techniques. Smart Agric. Technol. 2023, 4, 100221. [Google Scholar] [CrossRef]
- Zhou, C.; Lee, W.S.; Liburd, O.E.; Aygun, I.; Zhou, X.; Pourreza, A.; Schueller, J.K.; Ampatzidis, Y. Detecting two-spotted spider mites and predatory mites in strawberry using deep learning. Smart Agric. Technol. 2023, 4, 100229. [Google Scholar] [CrossRef]
- Moskolaï, W.R.; Abdou, W.; Dipanda, A.; Kolyang. Application of Deep Learning Architectures for Satellite Image Time Series Prediction: A Review. Remote Sens. 2021, 13, 4822. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, S.; He, H.; Yang, K.; Ma, L.; Li, J. Reconstructing GRACE-like TWS anomalies for the Canadian landmass using deep learning and land surface model. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102404. [Google Scholar] [CrossRef]
- Ahmed, M.; Sultan, M.; Elbayoumi, T.; Tissot, P. Forecasting GRACE Data over the African Watersheds Using Artificial Neural Networks. Remote Sens. 2019, 11, 1769. [Google Scholar] [CrossRef]
- Brock, J.; Abdallah, Z.S. Investigating Temporal Convolutional Neural Networks for Satellite Image Time Series Classification: A survey. arXiv 2023, arXiv:2204.08461. [Google Scholar]
- Pelletier, C.; Webb, G.I.; Petitjean, F. Temporal Convolutional Neural Network for the Classification of Satellite Image Time Series. Remote Sens. 2019, 11, 523. [Google Scholar] [CrossRef]
- Mboga, N.; Georganos, S.; Grippa, T.; Lennert, M.; Vanhuysse, S.; Wolff, E. Fully Convolutional Networks and Geographic Object-Based Image Analysis for the Classification of VHR Imagery. Remote Sens. 2019, 11, 597. [Google Scholar] [CrossRef]
- Mohammadi, S.; Belgiu, M.; Stein, A. Improvement in crop mapping from satellite image time series by effectively supervising deep neural networks. ISPRS J. Photogramm. Remote Sens. 2023, 198, 272–283. [Google Scholar] [CrossRef]
- Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 640–651. [Google Scholar] [CrossRef] [PubMed]
- Himanshu, S. CSR GRACE and GRACE-FO RL06 Mascon Solutions v02. Available online: https://www2.csr.utexas.edu/grace/RL06_mascons.html (accessed on 29 August 2023).
- Yi, S.; Sneeuw, N. Filling the data gaps within GRACE missions using singular spectrum analysis. J. Geophys. Res. Solid Earth 2021, 126, e2020JB021227. [Google Scholar] [CrossRef]
- Másmela-Mendoza, J.E. Distribución potencial y nicho fundamental de Moniliophthora spp en cacao de América y África. Agron. Mesoam. 2019, 30, 659–679. [Google Scholar] [CrossRef]
- Harvyanti, A.F.M.; Baihaki, R.I.; Ridlo, Z.R.; Agustin, I.H. Application of Convolutional Neural Network for Identifying Cocoa Leaf Disease. In Proceedings of the 1st International Conference on Neural Networks and Machine Learning 2022 (ICONNSMAL 2022), East Java, Indonesia, 29–30 November 2022; Atlantis Press: Amsterdam, The Netherlands, 2023; pp. 283–304. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–37. [Google Scholar]
- Sun, Z.; Long, D.; Yang, W.; Li, X.; Pan, Y. Reconstruction of GRACE Data on Changes in Total Water Storage Over the Global Land Surface and 60 Basins. Water Resour. Res. 2020, 56, e2019WR026250. [Google Scholar] [CrossRef]
- Lea, C.; Vidal, R.; Reiter, A.; Hager, G.D. Temporal Convolutional Networks: A Unified Approach to Action Segmentation. arXiv 2016, arXiv:1608.08242. [Google Scholar]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.k.; Woo, W.c. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. In Proceedings of the 28th International Conference on Neural Information Processing Systems—Volume 1, Montreal, QC, USA, 7–12 December 2015; MIT Press: Cambridge, MA, USA, 2015; pp. 802–810. [Google Scholar]
- Ehteram, M.; Najah Ahmed, A.; Khozani, Z.S.; El-Shafie, A. Graph convolutional network—Long short term memory neural network- multi layer perceptron- Gaussian progress regression model: A new deep learning model for predicting ozone concertation. Atmos. Pollut. Res. 2023, 14, 101766. [Google Scholar] [CrossRef]
- Ortega Adarme, M.; Doblas Prieto, J.; Queiroz Feitosa, R.; De Almeida, C.A. Improving Deforestation Detection on Tropical Rainforests Using Sentinel-1 Data and Convolutional Neural Networks. Remote Sens. 2022, 14, 3290. [Google Scholar] [CrossRef]
- Dascălu, A.; Catalão, J.; Navarro, A. Detecting Deforestation Using Logistic Analysis and Sentinel-1 Multitemporal Backscatter Data. Remote Sens. 2023, 15, 290. [Google Scholar] [CrossRef]
- Slagter, B.; Reiche, J.; Marcos, D.; Mullissa, A.; Lossou, E.; Peña-Claros, M.; Herold, M. Monitoring direct drivers of small-scale tropical forest disturbance in near real-time with Sentinel-1 and -2 data. Remote Sens. Environ. 2023, 295, 113655. [Google Scholar] [CrossRef]
- Solórzano, J.V.; Mas, J.F.; Gallardo-Cruz, J.A.; Gao, Y.; Fernández-Montes de Oca, A. Deforestation detection using a spatio-temporal deep learning approach with synthetic aperture radar and multispectral images. ISPRS J. Photogramm. Remote Sens. 2023, 199, 87–101. [Google Scholar] [CrossRef]
Feature | Range | Unit |
---|---|---|
Surface net solar radiation | 1.319 × 10 | J·m |
Skin temperature | 14.91 | K |
Evaporation | 0.005 | m of water equivalent |
Total precipitation | 0.027 | m |
Leaf area index, high vegetation | 6.0 | m·m |
Leaf area index, low vegetation | 4.106 | m·m |
Volumetric soil water layer 1 | 0.5 | m·m |
Volumetric soil water layer 2 | 0.503 | m·m |
Volumetric soil water layer 3 | 0.507 | m·m |
Volumetric soil water layer 4 | 0.512 | m·m |
0 | 1 | 2 | 3 | 4 | 5 | ||
---|---|---|---|---|---|---|---|
vanilla CNN | Train MAE | 0.00440 | 0.00435 | 0.00328 | 0.00743 | 0.00547 | 0.00669 |
Train MSE | 0.00004 | 0.00004 | 0.00002 | 0.00012 | 0.00007 | 0.00011 | |
Test MAE | 0.03940 | 0.03426 | 0.03593 | 0.03836 | 0.03585 | 0.03569 | |
Test MSE | 0.00304 | 0.00242 | 0.00267 | 0.00278 | 0.00260 | 0.00261 | |
CIWA-net | Train MAE | 0.01932 | 0.01948 | 0.01258 | 0.01490 | 0.02425 | 0.01639 |
Train MSE | 0.00074 | 0.00078 | 0.00033 | 0.00046 | 0.00146 | 0.00055 | |
Test MAE | 0.04461 | 0.03479 | 0.03189 | 0.03273 | 0.03861 | 0.03435 | |
Test MSE | 0.00407 | 0.00218 | 0.00192 | 0.00200 | 0.00281 | 0.00217 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferraris, S.; Meo, R.; Pinardi, S.; Salis, M.; Sartor, G. Machine Learning as a Strategic Tool for Helping Cocoa Farmers in Côte D’Ivoire. Sensors 2023, 23, 7632. https://doi.org/10.3390/s23177632
Ferraris S, Meo R, Pinardi S, Salis M, Sartor G. Machine Learning as a Strategic Tool for Helping Cocoa Farmers in Côte D’Ivoire. Sensors. 2023; 23(17):7632. https://doi.org/10.3390/s23177632
Chicago/Turabian StyleFerraris, Stefano, Rosa Meo, Stefano Pinardi, Matteo Salis, and Gabriele Sartor. 2023. "Machine Learning as a Strategic Tool for Helping Cocoa Farmers in Côte D’Ivoire" Sensors 23, no. 17: 7632. https://doi.org/10.3390/s23177632
APA StyleFerraris, S., Meo, R., Pinardi, S., Salis, M., & Sartor, G. (2023). Machine Learning as a Strategic Tool for Helping Cocoa Farmers in Côte D’Ivoire. Sensors, 23(17), 7632. https://doi.org/10.3390/s23177632