Series Arc Fault Detection Based on Multimodal Feature Fusion
Abstract
:1. Introduction
2. Current Signal Analysis and Feature Extraction
2.1. Current Signal Analysis
2.2. Current Signal Feature Extraction
2.2.1. Time-Domain Feature Extraction
2.2.2. Frequency-Domain Feature Extraction
2.2.3. Wavelet Packet Energy Feature Extraction
2.2.4. Continuous Wavelet Transform Image Features
3. Arc Fault Feature Data Processing
3.1. Feature Selection
3.2. Time–Frequency Image Grayscale
3.3. Time–Frequency Image Feature Reconstruction
4. Series Arc Fault Detection Algorithm
5. Result
5.1. Result Analysis
5.2. Test Result Validation and Visualization
5.3. Comparison with Detection Methods Based on Single-Modal Feature
5.4. Comparison with Other Published Detection Methods
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fire Department of the Ministry of Public Security. 2018 China Fire Yearbook; Yunnan People’s Publishing House: Kunming, China, 2018. [Google Scholar]
- Bureau of Fire and Rescue, Ministry of Emergency Management. Fires in Residential Places Nationwide in the Past 10 Years Caused 11,634 People Killed [EB/OL]. Available online: https://www.119.gov.cn/gk/sjtj/2022/27328.shtml (accessed on 18 February 2022).
- Sidhu, T.S.; Singh, G.; Sachdev, M.S. Microprocessor based instrument for detecting and locating electric arcs. IEEE Trans. Power Deliv. 1998, 13, 1079–1085. [Google Scholar] [CrossRef]
- Hu, D.; Yu, W.; Jin, Q.; Peng, J.; Zhe, Y.; Li, Y.; Feng, L.; He, B. Research and analysis of two-phase arc fault test in 12 kV switchgear. Low Volt. Appar. 2020, 594, 72–78. [Google Scholar]
- Yuan, Y.; Ma, S.; Wu, J.; Jia, B.; Li, W.; Luo, X. Fault diagnosis in gas insulated switchgear based on genetic algorithm and density-based spatial clustering of applications with noise. IEEE Sens. J. 2021, 21, 965–973. [Google Scholar]
- Liu, Z.; Ding, X.; Chen, F.; Fu, S.; Dong, T. Research on switchgear arc discharge fault and its measurement. Power Syst. Technol. 2017, 41, 1345–1349. [Google Scholar]
- Tseng, K.J.; Wang, Y.; Vilathgamuwa, D.M. An experimentally verified hybrid Cassie-Mayr electric arc model for power electronics simulations. IEEE Trans. Power Electron. 1997, 12, 429–436. [Google Scholar] [CrossRef]
- Qu, N.; Wang, J.; Liu, J. A series arc fault detection method based on Cassie model and L3/4 norm. Power Syst. Technol. 2018, 42, 3992–3997. (In Chinese) [Google Scholar]
- Guardado, J.L.; Maximov, S.G.; Melgoza, E.; Naredo, J.L.; Moreno, P. An improved arc model before current zero based on the combined Mayr and Cassie arc models. IEEE Trans. Power Deliv. 2005, 20, 138–142. [Google Scholar] [CrossRef]
- Yang, M.; Long, Y.; Fan, S.; Ma, G. Simulation and analysis of arc grounding fault based on combined Mayr and Cassie arc models. Electr. Meas. Instrum. 2019, 56, 8–13. (In Chinese) [Google Scholar]
- Li, W.; Qu, N.; Zhang, S.; Zheng, T. Simulation study of series arc fault based on wavelet analysis and Schwarz model. Fire Sci. Technol. 2020, 39, 1260–1263. (In Chinese) [Google Scholar]
- Gao, Y.; Wang, L.; Zhang, Y.; Zeng, K. Research on the calculation method for the parameters of the simplified Schavemaker AC arc model. Power Syst. Prot. Control 2019, 47, 96–105. (In Chinese) [Google Scholar]
- Wang, Y.; Cao, L.; Chen, X.; Shen, Y. Research on Habedank arc mathematics model of double pantograph-catenary considering double pantographs interval. High Volt. Appar. 2021, 57, 18–26. (In Chinese) [Google Scholar]
- Han, C.; Wang, Z.; Tang, A.; Gao, H.; Guo, F. Recognition method of AC series arc fault characteristics under complicated harmonic conditions. IEEE Trans. Instrum. Meas. 2021, 70, 3509709. [Google Scholar] [CrossRef]
- Gao, H.; Wang, Z.; Tang, A.; Han, C.; Guo, F.; Li, B. Research on series arc fault detection and phase selection feature extraction method. IEEE Trans. Instrum. Meas. 2021, 70, 2004508. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, F.; Wang, Z.; Chen, C.K. Research on the spectral characteristics of series-type fault arcs based on information entropy. J. Electr. Eng. Technol. 2015, 30, 488–495. (In Chinese) [Google Scholar]
- Chu, R.; Zhang, R.; Yang, K.; Xiao, J. A series arc fault detection method based on multi-layer convolutional neural network. Power Syst. Technol. 2020, 44, 4792–4798. (In Chinese) [Google Scholar]
- Chen, X.; Gao, W.; Hong, C.; Tu, Y. A novel series arc fault detection method for photovoltaic system based on multi-input neural network. Int. J. Electr. Power Energy Syst. 2022, 140, 108018. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, J.; Lou, J. Series arc fault detection based on current fluctuation and zero-current features. Electr. Power Syst. Res. 2022, 202, 107626. [Google Scholar] [CrossRef]
- Cui, R.; Zhang, Z.; Tong, D.; Cui, J. Improved empirical wavelet transform based multi-feature fusion for aerial AC series arc fault detection. J. Electr. Eng. Technol. 2022, 37, 3148–3161. (In Chinese) [Google Scholar]
- Wang, Y.; Liu, H.; Chen, N. Vehicle Detection for Unmanned Systems Based on Multimodal Feature Fusion. Appl. Sci. 2022, 12, 6198. [Google Scholar] [CrossRef]
- Virk, J.S.; Singh, M.; Singh, M.; Panjwani, U.; Ray, K. A Multimodal Feature Fusion Framework for Sleep-Deprived Fatigue Detection to Prevent Accidents. Sensors 2023, 23, 4129. [Google Scholar] [CrossRef]
- Liang, Y.; Tohti, T.; Hamdulla, A. False Information Detection via Multimodal Feature Fusion and Multi-Classifier Hybrid Prediction. Algorithms 2022, 15, 119. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, T.; Wang, J.; Wei, S.; Shao, X. Continuous wavelet transform and MTL-SEResNet based fault level assessment of circuit breakers. J. Instrum. 2022, 43, 162–173. (In Chinese) [Google Scholar]
- Wang, T.Y.; Chen, H.; Wang, G.; Wu, N. EEG sleep staging model using wavelet transform and bidirectional long- and short-term memory network. J. Xi’an Jiaotong Univ. 2022, 56, 104–111. (In Chinese) [Google Scholar]
- Zhao, M.; Zhong, S.; Fu, X.; Tang, B.; Pecht, M. Deep residual shrinkage networks for fault diagnosis. IEEE Trans. Ind. Inform. 2019, 16, 4681–4690. [Google Scholar] [CrossRef]
- Cui, R.; Zhang, Z.; Tong, D.; Cui, J. Aviation AC Series Arc Fault Detection Based on Improve Empirical Wavelet Transform Multi-Feature Fusion. Trans. China Electrotech. Soc. 2022, 37, 3148–3161. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, X.; Zhao, Y.; Zhang, D.; Li, K. Arc fault detection and load type identification based on deep auto-encoding network. J. Univ. Jinan (Sci. Technol.) 2023, 03, 322–330. [Google Scholar] [CrossRef]
- Su, L.; Shen, Y.; Yang, F.; Xu, B.; Cui, Y.; Wang, W.; Zou, G. Series arc fault detection combining CEEMDAN decomposition and sensitive IMF selection. J. Electron. Meas. Instrum. 2022, 36, 173–180. [Google Scholar]
Serial Number | Load Type | Experimental Load | Power Rating |
---|---|---|---|
1 | Linear | Incandescent lamps | 100 W |
2 | Linear | Incandescent series inductor | 100 W |
3 | Linear | Electric hair dryer | 400 W |
4 | Nonlinear | Induction cooker | 1200 W |
5 | Nonlinear | Computer | 350 W |
6 | Nonlinear | Hand drill | 500 W |
Serial Number | Experimental Load | Scaling Parameter a |
---|---|---|
1 | Incandescent lamps | 64 |
2 | Incandescent series inductor | 64 |
3 | Electric hair dryer | 64 |
4 | Induction cooker | 64 |
5 | Computer | 64 |
6 | Hand drill | 32 |
Experimental Load | Load Status | Original Sample | Expanded Sample | Label | Thermal Coding |
---|---|---|---|---|---|
Incandescent lamp | Normal | 62 | 530 | 0 | [1 0 0 0 0 0 0 0 0 0 0 0] |
Arc fault | 62 | 530 | 1 | [0 1 0 0 0 0 0 0 0 0 0 0] | |
Series inductance of incandescent lamps | Normal | 62 | 530 | 2 | [0 0 1 0 0 0 0 0 0 0 0 0] |
Arc fault | 62 | 530 | 3 | [0 0 0 1 0 0 0 0 0 0 0 0] | |
Hair dryer | Normal | 62 | 530 | 4 | [0 0 0 0 1 0 0 0 0 0 0 0] |
Arc fault | 62 | 530 | 5 | [0 0 0 0 0 1 0 0 0 0 0 0] | |
Induction cooker | Normal | 62 | 530 | 6 | [0 0 0 0 0 0 1 0 0 0 0 0] |
Arc fault | 62 | 530 | 7 | [0 0 0 0 0 0 0 1 0 0 0 0] | |
Computer | Normal | 62 | 530 | 8 | [0 0 0 0 0 0 0 0 1 0 0 0] |
Arc fault | 62 | 530 | 9 | [0 0 0 0 0 0 0 0 0 1 0 0] | |
Electric hand drill | Normal | 62 | 530 | 10 | [0 0 0 0 0 0 0 0 0 0 1 0] |
Arc fault | 62 | 530 | 11 | [0 0 0 0 0 0 0 0 0 0 0 1] |
Serial Number | Loss Value | Accuracy Rate (%) |
---|---|---|
1 | 0.1199 | 98.53 |
2 | 0.0962 | 99.26 |
3 | 0.1041 | 98.47 |
4 | 0.0973 | 99.15 |
Mean | 0.1043 | 98.87 |
Paper | Detection Method | Detection Accuracy | Experiment Load | Computational Complexity (Highest Order) |
---|---|---|---|---|
This paper | Attention-DRSN | 98.87% | 6 | Linear and nonlinear |
Reference [17] | TDV-CNN | 97.7% | 5 | Linear |
Reference [27] | IEWT-ELM | 97.85% | 7 | Mixed load |
Reference [28] | Deep auto-encoding network | 98.56% | 8 | Nonlinear |
Reference [29] | SVM | 88.33% | 3 | Nonlinear |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, N.; Wei, W.; Hu, C. Series Arc Fault Detection Based on Multimodal Feature Fusion. Sensors 2023, 23, 7646. https://doi.org/10.3390/s23177646
Qu N, Wei W, Hu C. Series Arc Fault Detection Based on Multimodal Feature Fusion. Sensors. 2023; 23(17):7646. https://doi.org/10.3390/s23177646
Chicago/Turabian StyleQu, Na, Wenlong Wei, and Congqiang Hu. 2023. "Series Arc Fault Detection Based on Multimodal Feature Fusion" Sensors 23, no. 17: 7646. https://doi.org/10.3390/s23177646
APA StyleQu, N., Wei, W., & Hu, C. (2023). Series Arc Fault Detection Based on Multimodal Feature Fusion. Sensors, 23(17), 7646. https://doi.org/10.3390/s23177646