A Reaction-Based Optical Fingerprinting Strategy for the Recognition of Fat-Soluble Samples: Discrimination of Motor Oils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Reagents
2.2. Equipment
2.3. General Procedures
2.4. Data Processing
3. Results and Discussion
3.1. The Choice of Indicator Reactions
3.2. Indicator Reactions in the Presence of Oil Samples
3.3. Discrimination of Oils by Individual Indicator Reactions
3.4. Discrimination of Oils by Combining Several Reactions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Esteki, M.; Shahsavari, Z.; Simal-Gandara, J. Gas Chromatographic Fingerprinting Coupled to Chemometrics for Food Authentication. Food Rev. Intern. 2020, 36, 384–427. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, W.; Su, M.; Sun, Y.; Liu, H.; Nie, L.; Zang, H. Quality evaluation of traditional Chinese medicines based on fingerprinting. J. Sep. Sci. 2020, 43, 6–17. [Google Scholar] [CrossRef] [PubMed]
- Anzardi, M.B.; Arancibia, J.A.; Olivieri, A.C. Processing multi-way chromatographic data for analytical calibration, classification and discrimination: A successful marriage between separation science and chemometrics. Trends Anal. Chem. 2021, 134, 116128. [Google Scholar] [CrossRef]
- Li, Y.-Q.; Feng, L. Progress in Paper-based Colorimetric Sensor Array. Chin. J. Anal. Chem. 2020, 48, 1448–1457. [Google Scholar] [CrossRef]
- Sun, J.; Lu, Y.; He, L.; Pang, J.; Yang, F.; Liu, Y. Colorimetric sensor array based on gold nanoparticles: Design principles and recent advances. Trends Anal. Chem. 2020, 122, 115754. [Google Scholar] [CrossRef]
- Li, Z.; Suslick, K.S. The optoelectronic nose. Acc. Chem. Res. 2020, 54, 950–960. [Google Scholar] [CrossRef]
- Miranda, O.R.; You, C.-C.; Phillips, R.; Kim, I.-B.; Ghosh, P.S.; Bunz, U.H.F.; Rotello, V.M. Array-Based Sensing of Proteins Using Conjugated Polymers. J. Am. Chem. Soc. 2007, 129, 9857. [Google Scholar] [CrossRef]
- Rukosueva, E.A.; Dobrolyubov, E.O.; Goryacheva, I.Y.; Beklemishev, M.K. Discrimination of whiskies using an “add-a-fluorophore” fluorescent fingerprinting strategy. Microchem. J. 2019, 145, 397–405. [Google Scholar] [CrossRef]
- Stepanova, I.A.; Lebedeva, A.N.; Shik, A.V.; Skorobogatov, E.V.; Beklemishev, M.K. Recognition and Determination of Sulfonamides by Near-IR Fluorimetry Using Their Effect on the Rate of the Catalytic Oxidation of a Carbocyanine Dye by Hydrogen Peroxide. J. Analyt. Chem. 2021, 76, 1397–1405. [Google Scholar] [CrossRef]
- Shik, A.V.; Stepanova, I.A.; Doroshenko, I.A.; Podrugina, T.A.; Beklemishev, M.K. Carbocyanine-Based Fluorescent and Colorimetric Sensor Array for the Discrimination of Medicinal Compounds. Chemosensors 2022, 10, 88. [Google Scholar] [CrossRef]
- Shik, A.V.; Skorobogatov, E.V.; Bliznyuk, U.A.; Chernyaev, A.P.; Avdyukhina, V.M.; Borschegovskaya, P.Y.; Zolotov, S.A.; Baytler, M.O.; Doroshenko, I.A.; Podrugina, T.A.; et al. Estimation of doses absorbed by potato tubers under electron beam or X-ray irradiation using an optical fingerprinting strategy. Food Chem. 2023, 414, 135668. [Google Scholar] [CrossRef] [PubMed]
- Shik, A.V.; Stepanova, I.A.; Doroshenko, I.A.; Podrugina, T.A.; Beklemishev, M.K. Carbocyanine-Based Optical Sensor Array for the Discrimination of Proteins and Rennet Samples Using Hypochlorite Oxidation. Sensors 2023, 23, 4299. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hu, Z.; Wu, S.; Pan, J.; Xu, X.; Niu, X. A peroxidase-mimicking Zr-based MOF colorimetric sensing array to quantify and discriminate phosphorylated proteins. Anal. Chim. Acta 2020, 1121, 26–34. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, L.; Liang, Y. A Simple Visual Strategy for Protein Detection Based on Oxidase-Like Activity of Silver Nanoparticles. Food Anal. Methods 2021, 14, 1852–1859. [Google Scholar] [CrossRef]
- Wang, F.; Na, N.; Ouyang, J. Particle-in-a-frame gold nanomaterials with an interior nanogap-based sensor array for versatile analyte detection. Chem. Commun. 2021, 57, 4520–4523. [Google Scholar] [CrossRef]
- Pargari, M.; Marahel, F.; Goodajdar, B.M. Kinetic Spectrophotometric Method and Neural Network Model Application for the Quantitation of Epinephrine by Starch-capped AgNPs Sensor in Blood and Urine. J. Anal. Chem. 2022, 77, 484–494. [Google Scholar] [CrossRef]
- Crouch, S.R.; Cullen, T.F.; Scheeline, A.; Kirkor, E.S. Kinetic determinations and some kinetic aspects of analytical chemistry. Anal. Chem. 1998, 70, 53R–106R. [Google Scholar] [CrossRef]
- Zakharenkova, S.A.; Katkova, E.A.; Doroshenko, I.A.; Kriveleva, A.S.; Lebedeva, A.N.; Vidinchuk, T.A.; Shik, A.V.; Abramchuk, S.S.; Podrugina, T.A.; Beklemishev, M.K. Aggregation-based fluorescence amplification strategy: “Turn-on” sensing of aminoglycosides using near-IR carbocyanine dyes and pre-micellar surfactants. Spectr. Acta A 2021, 247, 119109. [Google Scholar] [CrossRef]
- Bayona, J.M.; Domínguez, C.; Albaigés, J. Analytical developments for oil spill fingerprinting, Trends Environ. Anal. Chem. 2015, 5, 26–34. [Google Scholar] [CrossRef]
- Fernández-Varela, R.; Andrade, J.M.; Muniategui, S.; Prada, D. Comparing the weathering patterns of six oils using 3-way generalized Procrustes rotation and matrix-augmentation principal components. Anal. Chim. Acta 2010, 683, 84–91. [Google Scholar] [CrossRef]
- Ismail, A.; Toriman, M.E.; Juahir, H.; Kassim, A.M.; Zain, S.M.; Ahmad, W.K.W.; Wong, K.F.; Retnam, A.; Zali, M.A.; Mokhtar, M.; et al. Chemometric techniques in oil classification from oil spill fingerprinting. Mar. Pollut. Bull. 2016, 111, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Bajoub, A.; Medina-Rodríguez, S.; Gómez-Romero, M.; Ajal, E.A.; Bagur-González, M.G.; Fernández-Gutiérrez, A.; Carrasco-Pancorbo, A. Assessing the varietal origin of extra-virgin olive oil using liquid chromatography fingerprints of phenolic compound, data fusion and chemometrics. Food Chem. 2017, 215, 245–255. [Google Scholar] [CrossRef]
- Hai, Z.; Wang, J. Electronic nose and data analysis for detection of maize oil adulteration in sesame oil. Sens. Actuat. B 2006, 119, 449–455. [Google Scholar] [CrossRef]
- Li, B.; Wang, H.; Zhao, Q.; Ouyang, J.; Wu, Y. Rapid detection of authenticity and adulteration of walnut oil by FTIR and fluorescence spectroscopy: A comparative study. Food Chem. 2015, 181, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Cebi, N.; Taylan, O.; Abusurrah, M.; Sagdic, O. Detection of Orange Essential Oil, Isopropyl Myristate, and Benzyl Alcohol in Lemon Essential Oil by FTIR Spectroscopy Combined with Chemometrics. Foods 2020, 10, 27. [Google Scholar] [CrossRef] [PubMed]
- Srata, L.; Farres, S.; Fethi, F. Engine oil authentication using near infrared spectroscopy and chemometrics methods. Vibrat. Spectrosc. 2019, 100, 99–106. [Google Scholar] [CrossRef]
- Vempatapu, B.P.; Kumar, J.; Ray, A.; Chhibber, V.K.; Kanaujia, P.K. Determination of biodiesel and used cooking oil in automotive diesel/green diesel fuels through high-performance liquid chromatography. J. Chromatogr. A 2020, 1629, 461512. [Google Scholar] [CrossRef]
- Ganeev, A.A.; Konyushenko, I.O.; Nemets, V.M. Study of the Conditions of Formation of Spectral Absorbption Multidimensional Images of Motor Fuels and Liquid Mineral Technical Oils. J. Anal. Chem. 2016, 71, 1182–1187. [Google Scholar] [CrossRef]
- Sikorska, E.; Khmelinskii, I.; Sikorski, M. Analysis of Olive Oils by Fluorescence Spectroscopy: Methods and Applications. In Olive Oil—Constituents, Quality, Health Properties and Bioconversions; Dimitrios, B., Ed.; InTech: London, UK, 2012. [Google Scholar] [CrossRef]
- Ahmadi, S.; Mani-Varnosfaderani, A.; Habibi, B. Motor Oil Classification Using Color Histograms and Pattern Recognition Techniques. J. AOAC Int. 2018, 101, 1967–1976. [Google Scholar] [CrossRef]
- Bassbasi, M.; Hafd, A.; Platikanov, S.; Tauler, R.; Oussama, A. Study of motor oil adulteration by infrared spectroscopy and chemometrics methods. Fuel 2013, 104, 798–804. [Google Scholar] [CrossRef]
- Meng, F.; Chen, S.; Zhang, Y.; Chen, H.; Guo, P.; Mu, T.; Liu, X. Characterization of motor oil by laser-induced fluorescence. Anal. Lett. 2015, 48, 2090–2095. [Google Scholar] [CrossRef]
- Srata, L.; Farres, S.; Chikri, M.; Addou, S.; Fethi, P. Detection of the Adulteration of Motor Oil by Laser Induced Fluorescence Spectroscopy and Chemometric Techniques. J. Fluoresc. 2023, 33, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Lima, E.; Barroso, A.G.; Sousa, M.A.; Ferreira, O.; Boto, R.E.; Fernandes, J.R.; Almeida, P.; Silvestre, S.M.; Santos, A.d.O.; Reis, L.V. Picolylamine-functionalized benz[e]indole squaraine dyes: Synthetic approach, characterization and in vitro efficacy as potential anticancer phototherapeutic agents. Eur. J. Med. Chem. 2022, 229, 114071. [Google Scholar] [CrossRef] [PubMed]
Abbreviation | Name | SAE Grade | Manufacturer |
---|---|---|---|
SRS 5W30 | Cargolub TFX | 5W30 | SRS Schmierstoff Vertrieb GmbH 1 |
SRS 5W40 | Cargolub TFX | 5W40 | SRS Schmierstoff Vertrieb GmbH 1 |
SRS 10W40 | Cargolub TFX | 10W40 | SRS Schmierstoff Vertrieb GmbH 1 |
LUK | Genesis Armortech | 5W30 | Lukoil (LLK International) 2 |
EVE | Everest | 5W40 | US Global Petroleum 3 |
GAZ | Gazpromneft Premium | 10W40 | Gazpromneft-S 2 |
Dye | Oxidant | Solutions Added into a Well (in the Order Shown) |
---|---|---|
1 | t-BuOOH | (a) 10 µL of motor oil solution (MO); (b) 10 µL of dye 1; (c) 10 µL of 1 М HCl; (d) 180 µL of EtOH; (e) 90 µL of t-BuOOH |
t-BuOOH (Cu2+ as catalyst) | (а) 10 µL of MO; (b) 10 µL of dye 1; (c) 10 µL of 1 М HCl; (d) 200 µL of EtOH; (e) 10 µL of 10−4 М Cu2+; (f) 60 µL of t-BuOOH | |
HNO3 | (а) 10 µL of MO; (b) 10 µL of dye 1; (c) 250 µL of EtOH; (d) 30 µL of concentrated HNO3 | |
Aqua regia | (a) 10 µL of MO; (b) 10 µL of aqua regia; (c) 270 µL of EtOH; (d) 10 µL of dye 1 | |
O2 | (а) 10 µL of MO; (b) 10 µL of dye 1; (c) 60 µL of concentrated HCl; (d) 220 µL of EtOH | |
2 | t-BuOOH | (a) 10 µL of MO; (b) 10 µL of dye 2; (c) 10 µL of 1 М HCl; (d) 180 µL of EtOH; (e) 90 µL of t-BuOOH |
t-BuOOH (Cu2+ as catalyst) | (а) 10 µL of MO; (b) 10 µL of dye 2; (c) 10 µL of 1 М HCl; (d) 220 µL of EtOH; (e) 20 µL of 10−4 М Cu2+; (f) 30 µL of t-BuOOH | |
HNO3 | (а) 10 µL of MO; (b) 10 µL of dye 2; (c) 250 µL of EtOH; (d) 30 µL of concentrated HNO3 | |
Aqua regia | (a) 30 µL of MO; (b) 30 µL of aqua regia; (c) 230 µL of EtOH; (d) 10 µL of dye 2 |
Dye | Oxidant | Reaction Number | Type of Data Used * | Discrimination Accuracy **, % | ||
---|---|---|---|---|---|---|
kNN (All Channels) | kNN (1 Channel #) | LDA (All Channels) | ||||
1 | t-BuOOH (Cu2+ as catalyst) | 1 | Vis. + NIR | 33 | 33 (NIR) | 40 |
Aqua regia | 2 | Vis. | 73 | 60 (G) | 50 | |
t-BuOOH | 3 | Vis. + NIR | 57 | 57 (G) | 67 | |
O2 | 4 | Vis. | 40 | 30 (G) | 70 | |
HNO3 | 5 | Vis. | 90 | 87 (B) | 100 | |
2 | t-BuOOH (Cu2+ as catalyst) | 6 | Vis. + NIR | 67 | 57 (NIR) | 50 |
Aqua regia | 7 | Vis. | 46 | 37 (G) | 57 | |
t-BuOOH | 8 | Vis. + NIR | 63 | 43 (B) | 73 | |
HNO3 | 9 | Vis. | 53 | 57 (B) | 93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pypin, A.A.; Shik, A.V.; Stepanova, I.A.; Doroshenko, I.A.; Podrugina, T.A.; Beklemishev, M.K. A Reaction-Based Optical Fingerprinting Strategy for the Recognition of Fat-Soluble Samples: Discrimination of Motor Oils. Sensors 2023, 23, 7682. https://doi.org/10.3390/s23187682
Pypin AA, Shik AV, Stepanova IA, Doroshenko IA, Podrugina TA, Beklemishev MK. A Reaction-Based Optical Fingerprinting Strategy for the Recognition of Fat-Soluble Samples: Discrimination of Motor Oils. Sensors. 2023; 23(18):7682. https://doi.org/10.3390/s23187682
Chicago/Turabian StylePypin, Arseniy A., Anna V. Shik, Irina A. Stepanova, Irina A. Doroshenko, Tatyana A. Podrugina, and Mikhail K. Beklemishev. 2023. "A Reaction-Based Optical Fingerprinting Strategy for the Recognition of Fat-Soluble Samples: Discrimination of Motor Oils" Sensors 23, no. 18: 7682. https://doi.org/10.3390/s23187682
APA StylePypin, A. A., Shik, A. V., Stepanova, I. A., Doroshenko, I. A., Podrugina, T. A., & Beklemishev, M. K. (2023). A Reaction-Based Optical Fingerprinting Strategy for the Recognition of Fat-Soluble Samples: Discrimination of Motor Oils. Sensors, 23(18), 7682. https://doi.org/10.3390/s23187682