Comparative Analysis of Predictive Interstitial Glucose Level Classification Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Feature Engineering
2.3. Forecasting Methodology
2.4. Population
3. Results
3.1. ARIMA
3.2. Logistic Regression
3.3. LSTM
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zaharieva, D.P.; Turksoy, K.; McGaugh, S.M.; Pooni, R.; Vienneau, T.; Ly, T.; Riddell, M.C. Lag Time Remains with Newer Real-Time Continuous Glucose Monitoring Technology During Aerobic Exercise in Adults Living with Type 1 Diabetes. Diabetes Technol. Ther. 2019, 21, 313–321. [Google Scholar] [CrossRef]
- Rodbard, D. Continuous Glucose Monitoring: A Review of Successes, Challenges, and Opportunities. Diabetes Technol. Ther. 2016, 18 (Suppl. S2), S3–S13. [Google Scholar] [CrossRef]
- Blauw, H.; Keith-Hynes, P.; Koops, R.; DeVries, J.H. A Review of Safety and Design Requirements of the Artificial Pancreas. Ann. Biomed. Eng. 2016, 44, 3158–3172. [Google Scholar] [CrossRef]
- Martinsson, J.; Schliep, A.; Eliasson, B.; Mogren, O. Blood Glucose Prediction with Variance Estimation Using Recurrent Neural Networks. J. Healthc. Inform. Res. 2019, 4, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Li, K.; Chen, J.; Herrero, P.; Georgiou, P. Dilated Recurrent Neural Networks for Glucose Forecasting in Type 1 Diabetes. J. Healthc. Inform. Res. 2020, 4, 308–324. [Google Scholar] [CrossRef] [PubMed]
- Daniels, J.; Herrero, P.; Georgiou, P. A Multitask Learning Approach to Personalized Blood Glucose Prediction. IEEE J. Biomed. Health Inform. 2022, 26, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Khadem, H.; Nemat, H.; Elliott, J.; Benaissa, M. Blood Glucose Level Time Series Forecasting: Nested Deep Ensemble Learning Lag Fusion. Bioengineering 2023, 10, 487. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rodríguez, I.; Rodríguez, J.-V.; Molina-García-Pardo, J.-M.; Zamora-Izquierdo, M.-Á.; Martínez-Inglés, M.-T.M.-I.I. A Comparison of Different Models of Glycemia Dynamics for Improved Type 1 Diabetes Mellitus Management with Advanced Intelligent Analysis in an Internet of Things Context. Appl. Sci. 2020, 10, 4381. [Google Scholar] [CrossRef]
- Rabby, M.F.; Tu, Y.; Hossen, M.I.; Lee, I.; Maida, A.S.; Hei, X. Stacked LSTM based deep recurrent neural network with kalman smoothing for blood glucose prediction. BMC Med. Inform. Decis. Mak. 2021, 21, 101. [Google Scholar] [CrossRef]
- Zhu, T.; Wang, W.; Yu, M. A novel blood glucose time series prediction framework based on a novel signal decomposition method. Chaos Solitons Fractals 2022, 164, 112673. [Google Scholar] [CrossRef]
- Available online: https://github.com/jxx123/simglucose (accessed on 3 August 2023).
- Sourij, C.; Tripolt, N.J.; Aziz, F.; Aberer, F.; Forstner, P.; Obermayer, A.M.; Kojzar, H.; Kleinhappl, B.; Pferschy, P.N.; Mader, J.K.; et al. Humoral immune response to COVID-19 vaccination in diabetes is age-dependent but independent of type of diabetes and glycaemic control: The prospective COVAC-DM cohort study. Diabetes Obes. Metab. 2022, 24, 849–858. [Google Scholar] [CrossRef] [PubMed]
- Sadegh, M.; Hui, S.; Razvan, B.; Cindy, M. Lstms and neural attention models for blood glucose prediction: Comparative experiments on real and synthetic data. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, Berlin, Germany, 23–27 July 2019; pp. 706–712. [Google Scholar]
- Ali, M.; Alexander, J.R.; Nicklas, H.; Peter, C.E.; Jens, T.M.; Morten, J.L.; Henrik, B.; Morten, M. Short term blood glucose prediction based on continuous glucose monitoring data. arXiv 2020, arXiv:2002.02805. [Google Scholar]
- Dave, D.; DeSalvo, D.J.; Haridas, B.; McKay, S.; Shenoy, A.; Koh, C.J.; Lawley, M.; Erraguntla, M. Feature-Based Machine Learning Model for Real-Time Hypoglycemia Prediction. J. Diabetes Sci. Technol. 2021, 15, 842–855. [Google Scholar] [CrossRef]
- Prendin, F.; Del Favero, S.; Vettoretti, M.; Sparacino, G.; Facchinetti, A. Forecasting of Glucose Levels and Hypoglycemic Events: Head-to-Head Comparison of Linear and Nonlinear Data-Driven Algorithms Based on Continuous Glucose Monitoring Data Only. Sensors 2021, 21, 1647. [Google Scholar] [CrossRef] [PubMed]
- Mujahid, O.; Contreras, I.; Vehi, J. Machine Learning Techniques for Hypoglycemia Prediction: Trends and Challenges. Sensors 2021, 21, 546. [Google Scholar] [CrossRef]
- Van Doorn, W.P.T.M.; Foreman, Y.D.; Schaper, N.C.; Savelberg, H.H.C.M.; Koster, A.; van der Kallen, C.J.H.; Wesselius, A.; Schram, M.T.; Henry, R.M.A.; Pieter, C. Brouwers, Machine learning-based glucose prediction with use of continuous glucose and physical activity monitoring data: The Maastricht Study. PLoS ONE 2021, 16, e0253125. [Google Scholar] [CrossRef]
- Forbes, J.M.; Cooper, M.E. Mechanisms of diabetic complications. Physiol. Rev. 2013, 93, 137–188. [Google Scholar] [CrossRef]
- American Diabetes, A. 6. Glycemic Targets: Standards of Medical Care in Diabetes-2019. Diabetes Care 2019, 42 (Suppl. S1), S61–S70. [Google Scholar] [CrossRef]
- International Hypoglycaemia Study, G. Hypoglycaemia, cardiovascular disease, and mortality in diabetes: Epidemiology, pathogenesis, and management. Lancet Diabetes Endocrinol. 2019, 7, 385–396. [Google Scholar]
- Prince, S.A.; Adamo, K.B.; Hamel, M.E.; Hardt, J.; Connor Gorber, S.; Tremblay, M. A comparison of direct versus self-report measures for assessing physical activity in adults: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2008, 5, 56. [Google Scholar] [CrossRef]
- Moser, O.; Riddell, M.C.; Eckstein, M.L.; Adolfsson, P.; Rabasa-Lhoret, R.; van den Boom, L.; Gillard, P.; Nørgaard, K.; Oliver, N.S.; Zaharieva, D.P.; et al. Glucose management for exercise using continuous glucose monitoring (CGM) and intermittently scanned CGM (isCGM) systems in type 1 diabetes: Position statement of the European Association for the Study of Diabetes (EASD) and of the International Society for Pediatric and Adolescent Diabetes (ISPAD) endorsed by JDRF and supported by the American Diabetes Association (ADA). Diabetologia 2020, 63, 2501–2520. [Google Scholar]
- Tikkanen-Dolenc, H.; Wadén, J.; Forsblom, C.; Harjutsalo, V.; Thorn, L.M.; Saraheimo, M.; Elonen, N.; Hietala, K.; Summanen, P. Frequent physical activity is associated with reduced risk of severe diabetic retinopathy in type 1 diabetes. Acta Diabetol. 2020, 57, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Tikkanen-Dolenc, H.; Wadén, J.; Forsblom, C.; Harjutsalo, V.; Thorn, L.M.; Saraheimo, M.; Elonen, N.; Tikkanen, H.O.; Groop, P.H.; FinnDiane Study Group. Physical Activity Reduces Risk of Premature Mortality in Patients With Type 1 Diabetes With and Without Kidney Disease. Diabetes Care 2017, 40, 1727–1732. [Google Scholar] [CrossRef] [PubMed]
- Moser, O.; Tschakert, G.; Mueller, A.; Groeschl, W.; Pieber, T.R.; Obermayer-Pietsch, B.; Koehler, G.; Hofmann, P. Effects of High-Intensity Interval Exercise versus Moderate Continuous Exercise on Glucose Homeostasis and Hormone Response in Patients with Type 1 Diabetes Mellitus Using Novel Ultra-Long-Acting Insulin. PLoS ONE 2015, 10, e0136489. [Google Scholar] [CrossRef] [PubMed]
- Brazeau, A.; Mircescu, H.; Desjardins, K.; Dubé, M.; Weisnagel, S.; Lavoie, C.; Rabasa-Lhoret, R. The barriers to physical activity in Type 1 diabetes (BAPAD-1) scale: Predictive validity and reliability. Diab. Metabol. 2012, 38, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Moser, O.; Rafferty, J.; Eckstein, M.L.; Aziz, F.; Bain, S.C.; Bergenstal, R.; Sourij, H.; Thomas, R.L. Impact of severe hypoglycaemia requiring hospitalization on mortality in people with type 1 diabetes: A national retrospective observational cohort study. Diabetes Obes. Metab. 2023, 25, 2243–2254. [Google Scholar] [CrossRef] [PubMed]
- Standards of Medical Care in Diabetes. 2022. Available online: https://diabetesjournals.org/care/issue/45/Supplement_1 (accessed on 3 August 2023).
- Tikkanen-Dolenc, H.; Wadén, J.; Forsblom, C.; Harjutsalo, V.; Thorn, L.M.; Saraheimo, M.; Elonen, N.; Rosengård-Bärlund, M.; Gordin, D. Frequent and intensive physical activity reduces risk of cardiovascular events in type 1 diabetes. Diabetologia 2017, 60, 574–580. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, H.; Liu, L.; Bi, Y.; Li, X.; Kan, Y.; Liu, H.; Li, S.; Zou, Y.; Yuan, Y.; et al. Related factors associated with fear of hypoglycemia in parents of children and adolescents with type 1 diabetes—A systematic review. J. Pediatr. Nurs. 2022, 66, 125–135. [Google Scholar] [CrossRef]
- Finn, M.; Sherlock, M.; Feehan, S.; Guinan, E.M.; Moore, K.B. Adherence to physical activity recommendations and barriers to physical activity participation among adults with type 1 diabetes. Ir. J. Med. Sci. 2022, 191, 1639–1646. [Google Scholar] [CrossRef]
- Ahola, A.J.; Tikkanen-Dolenc, H.; Forsblom, C.; Harjutsalo, V.; Groop, P.H. Symptoms of depression are associated with reduced leisure-time physical activity in adult individuals with type 1 diabetes. Acta Diabetol. 2021, 58, 1373–1380. [Google Scholar] [CrossRef]
- Woldaregay, A.Z.; Årsand, E.; Walderhaug, S.; Albers, D.; Mamykina, L.; Botsis, T.; Hartvigsen, G. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Artif. Intell. Med. 2019, 98, 109–134. [Google Scholar] [CrossRef] [PubMed]
- Gyuk, P.; Vassányi, I.; Kósa, I. Blood Glucose Level Prediction for Diabetics Based on Nutrition and Insulin Administration Logs Using Personalized Mathematical Models. J. Healthc. Eng. 2019, 2019, 8605206. [Google Scholar] [CrossRef] [PubMed]
- Mathioudakis, N.N.; Everett, E.; Routh, S.; Pronovost, P.J.; Yeh, H.C.; Golden, S.H.; Saria, S. Development and validation of a prediction model for insulin-associated hypoglycemia in non-critically ill hospitalized adults. BMJ Open Diabetes Res. Care 2018, 6, e000499. [Google Scholar] [CrossRef] [PubMed]
Feature Group | Formula | Meaning |
---|---|---|
CGM Differences | 1st order: dCGM(t) = CGM(t) − CGM(t − 1) 2nd order: d2CGM(t) = dCGM(t) − dCGM(t − 1) | N-th order differences between consecutive CGM levels. |
Rolling Range | RollingMIN(t, N) = min(CGM(t), CGM(t − 1)), …, CGM(t − N + 1) RollingMAX(t, N) = max(CGM(t), CGM(t − 1)), …, CGM(t − N + 1) | Maximum and minimum values calculated over a window of observations. |
Range Oscillator | Oscillator(t) = (CGM(t) − RollingMIN(t, N))/ (RollingMAX(t, N) − RollingMIN(t, N)) | Position of the latest value in the rolling range. Range Oscillator value of 1 means it is at the top of the range, 0 means it is at the bottom, and a value in between indicates its relative position. |
Volatility | MAD(t, M) = sum(abs(dCGM(t)), abs(dCGM(t − 1)), …, abs(dCGM(t − M + 1))/M | Effectively represents the variability of the underlying data. Can be measured by rolling standard deviation of the CGM differences, mean absolute deviation (MAD), etc. |
Relative Speed | RS(t, M) = dCGM(t)/Volatility(t − 1, M) | Ratio of level change value to volatility, which effectively means how fast the latest change is compared to the rolling metric. Positive relative speed means the underlying time series is rising and negative relative speed means its falling. Relative speed values outside the range [−1, +1] can indicate trend acceleration, and inside the range—its deceleration. |
Glycemia Class | +1 (hyper) if CGM(t) > 180 GC(t) = 0 (norm) if 70 ≤ CGM(t) ≤ 180 − 1 (hypo) if CGM(t) < 70 | This is effectively what we aim to predict—hypoglycemia, hyperglycemia or normal |
ARIMA | Logistic Regression | LSTM | ||||
---|---|---|---|---|---|---|
15-min | 1-h | 15-min | 1-h | 15-min | 1-h | |
Glycemia state | ||||||
Hyper | 0.87 | 0.61 | 0.96 | 0.79 | 0.90 | 0.85 |
Norm | 0.87 | 0.70 | 0.91 | 0.59 | 0.78 | 0.63 |
Hypo | 0.60 | 0.07 | 0.98 | 0.83 | 0.88 | 0.87 |
Accuracy | 0.86 | 0.63 | 0.93 | 0.69 | 0.84 | 0.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kistkins, S.; Mihailovs, T.; Lobanovs, S.; Pīrāgs, V.; Sourij, H.; Moser, O.; Bļizņuks, D. Comparative Analysis of Predictive Interstitial Glucose Level Classification Models. Sensors 2023, 23, 8269. https://doi.org/10.3390/s23198269
Kistkins S, Mihailovs T, Lobanovs S, Pīrāgs V, Sourij H, Moser O, Bļizņuks D. Comparative Analysis of Predictive Interstitial Glucose Level Classification Models. Sensors. 2023; 23(19):8269. https://doi.org/10.3390/s23198269
Chicago/Turabian StyleKistkins, Svjatoslavs, Timurs Mihailovs, Sergejs Lobanovs, Valdis Pīrāgs, Harald Sourij, Othmar Moser, and Dmitrijs Bļizņuks. 2023. "Comparative Analysis of Predictive Interstitial Glucose Level Classification Models" Sensors 23, no. 19: 8269. https://doi.org/10.3390/s23198269
APA StyleKistkins, S., Mihailovs, T., Lobanovs, S., Pīrāgs, V., Sourij, H., Moser, O., & Bļizņuks, D. (2023). Comparative Analysis of Predictive Interstitial Glucose Level Classification Models. Sensors, 23(19), 8269. https://doi.org/10.3390/s23198269