LSTM-Autoencoder for Vibration Anomaly Detection in Vertical Carousel Storage and Retrieval System (VCSRS)
Abstract
:1. Introduction
- A correlation coefficient approach of selecting the right features was adopted to ensure the selection of the right amount of sensors for the vibration study on the vertical carousel storage and retrieval system (VCSRS).
- Techniques such as filtering, normalization, and feature extraction are commonly used to improve the quality of the data and enhance the performance of the anomaly detection algorithms. These techniques have helped to remove noise and outliers, reduce dimensionality, and extract relevant features from the data, making it easier to detect patterns and anomalies. Overall, data preprocessing has played a crucial role in improving the accuracy and effectiveness of vibration anomaly detection for the vertical carousel module under study.
- The real-time multi-sensor vibration data from the vertical carousel storage and retrieval system have served as a prospect for the operational reliability of one of the AS/RS system module in a more efficient way.
- The PdM methodology assists with the current and future health monitoring status of the vertical carousel module under study, thereby predicting the anomalies as a result of misalignment from the brushless DC motor providing the rotational motion.
2. Literature Review and Related Works
3. Theoretical Backgrounds
3.1. Modal Analysis
3.1.1. Correlation Coefficient
3.1.2. Fisher Information Matrix
3.1.3. Effective Independence
3.2. Vibration Signal Processing
3.2.1. Fast Fourier Transform
3.2.2. Power Spectral Density
3.3. Autoencoder
3.4. Long Short-Term Memory (LSTM)
4. Proposed Anomaly Detection Model
- One-class classification: This involves training a model on a dataset containing only normal instances and then using the model to identify instances that are significantly different from the normal instances.
- Outlier detection: This involves identifying instances that are significantly different from the majority of the instances in the dataset.
- Clustering: This involves grouping the data into clusters and then identifying instances that do not belong to any of the clusters.
- Time series analysis: This involves analyzing the data over time to identify unusual patterns or trends.
5. Sensor Placement and Data Acquisition
5.1. Modeling Analysis Procedure
- Use FEM to extract mode shapes of each node.
- Compute the correlation coefficient for each node’s mode shapes.
- Set the threshold and once it is greater than , one eliminates nodes. If it is lesser, one continues further the optimal sensor selection process to either effective independence (Efi) or Fisher information matrix (FIM).
- Lastly, perform a comparison of the EFi and FIM results.
5.2. Data Preprocessing
5.3. Model Hyperparameter Function
5.4. Metrics for Model Performance
- Accuracy:This is the most intuitive and straightforward metric, which measures the fraction of correctly predicted instances over the total number of instances.
- Precision: It measures the fraction of positive instances that the model correctly predicts. It is useful when the cost of false positives is high.
- Recall: It measures the fraction of positive instances correctly predicted by the model out of all the positive instances in the data. It is useful when the cost of false negatives is high.
- F1 Score: It is the harmonic mean of precision and recall, and it is a balanced measure that considers both false positives and false negatives.
- AUC-ROC: It stands for the “Area Under the Receiver Operating Characteristic” curve and is a popular metric to evaluate the performance of a binary classifier. It represents the probability that a randomly selected positive instance will be ranked higher than a randomly selected negative instance.
- Confusion Matrix: A table that shows the number of true positives, true negatives, false positives, and false negatives in a classification problem. It is helpful to understand the types of errors that the model is making and to identify patterns in the data that the model cannot capture.
- Classification Report: It summarizes the evaluation metrics for a classification problem, including precision, recall, f1-score, and support (number of instances for each class).
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | Anomaly Detection |
AE | Autoencoder |
AI | Artificial Intelligence |
AS/RS | Automatic Storage/Retrieval System |
CNN | Convolutional Neural Networks |
DFT | Discrete Fourier Transform |
EFI | Effective Independence |
FFT | Fast Fourier Transform |
FIM | Fisher Information Matrix |
FN | False Negative |
FP | False Positive |
IoT | Internet of Things |
LSTM | Long short term memory |
MSE | Mean Square Error |
NN | Neural Network |
PHM | Prognostics and Health Management |
PSD | Power Spectral Density |
RELU | Rectified Linear Unit |
RNN | recurrent Neural Networks |
RUL | Remaining Useful Life |
TN | True Negative |
TP | True Positive |
VA | Vibration Analysis |
VCSRS | Vertical Carousel Storage and Retrieval System |
References
- Nahavandi, S. Industry 5.0—A Human-Centric Solution. Sustainability 2019, 11, 4371. [Google Scholar] [CrossRef] [Green Version]
- Mourtzis, D.; Angelopoulos, J.; Panopoulos, N. A Literature Review of the Challenges and Opportunities of the Transition from Industry 4.0 to Society 5.0. Energies 2022, 15, 6276. [Google Scholar] [CrossRef]
- Xu, X.; Lu, Y.; Vogel-Heuser, B.; Wang, L. Industry 4.0 and Industry 5.0—Inception, conception and perception. J. Manuf. Syst. 2021, 61, 530–535. [Google Scholar] [CrossRef]
- Adel, A. Future of industry 5.0 in society: Human-centric solutions, challenges and prospective research areas. J. Cloud Comp. 2022, 11, 40. [Google Scholar] [CrossRef] [PubMed]
- Grabowska, S.; Saniuk, S.; Gajdzik, B. Industry 5.0: Improving humanization and sustainability of Industry 4.0. Scientometrics 2022, 127, 3117–3144. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, S.; Zeid, A. Smart Prognostics and Health Management (SPHM) in Smart Manufacturing: An Interoperable Framework. Sensors 2021, 21, 5994. [Google Scholar] [CrossRef]
- Tang, W.; Roman, D.; Dickie, R.; Robu, V.; Flynn, D. Prognostics and Health Management for the Optimization of Marine Hybrid Energy Systems. Energies 2020, 13, 4676. [Google Scholar] [CrossRef]
- Huang, Y.; Tao, J.; Sun, G.; Zhang, H.; Hu, Y. A Prognostic and Health Management Framework for Aero-Engines Based on a Dynamic Probability Model and LSTM Network. Aerospace 2022, 9, 316. [Google Scholar] [CrossRef]
- Roodbergen, K.J.; Vis, I.F.A. A survey of literature on automated storage and retrieval systems. Eur. J. Oper. Res. 2009, 194, 343–362. [Google Scholar] [CrossRef] [Green Version]
- Brezovnik, S.; Gotlih, J.; Balič, J.; Gotlih, K.; Brezočnik, M. Optimization of an Automated Storage and Retrieval Systems by Swarm Intelligence. Procedia Eng. 2015, 100, 1309–1318. [Google Scholar] [CrossRef]
- Song, Y.; Hyun, S.; Cheong, Y.-G. Analysis of Autoencoders for Network Intrusion Detection. Sensors 2021, 21, 4294. [Google Scholar] [CrossRef] [PubMed]
- Park, P.; Marco, P.D.; Shin, H.; Bang, J. Fault Detection and Diagnosis Using Combined Autoencoder and Long Short-Term Memory Network. Sensors 2019, 19, 4612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Zhang, Y.; Cheng, C.; Peng, Z. A hybrid classification autoencoder for semi-supervised fault diagnosis in rotating machinery. Mech. Syst. Signal Process. 2021, 149, 107327. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, Y.; Xiao, Q.; Hu, G.; Wang, J. Self-adversarial variational autoencoder with spectral residual for time series anomaly detection. Neurocomputing 2021, 458, 349–363. [Google Scholar] [CrossRef]
- Li, M.; Zou, D.; Luo, S.; Zhou, Q.; Cao, L.; Liu, H. A new generative adversarial network based imbalanced fault diagnosis method. Measurement 2022, 194, 111045. [Google Scholar] [CrossRef]
- Lee, S.Y.; Tama, B.A.; Moon, S.J.; Lee, S. Steel Surface Defect Diagnostics Using Deep Convolutional Neural Network and Class Activation Map. Appl. Sci. 2019, 9, 5449. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Martinez, C.; Visuña, L.; Khandhar, H.; Bhatt, C.; Carretero, J. Detection and analysis of COVID-19 in medical images using deep learning techniques. Sci. Rep. 2021, 11, 19638. [Google Scholar] [CrossRef]
- Seo, J.; Lee, S. Abnormal Behavior Detection to Identify Infected Systems Using the APChain Algorithm and Behavioral Profiling. Secur. Commun. Netw. 2018, 2018, 9706706. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, S.; Lee, S. Machine Learning-Based Anomaly Detection for Multivariate Time Series with Correlation Dependency. IEEE Access 2022, 10, 132062–132070. [Google Scholar] [CrossRef]
- Klerx, T.; Anderka, M.; Büning, H.K.; Priesterjahn, S. Model-Based Anomaly Detection for Discrete Event Systems. In Proceedings of the 2014 IEEE 26th International Conference on Tools with Artificial Intelligence, Limassol, Cyprus, 10–12 November 2014; pp. 665–672. [Google Scholar] [CrossRef]
- Ting, J.A.; Theodorou, E.; Schaal, S. A Kalman filter for robust outlier detection. In Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October–2 November 2007; pp. 1514–1519. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Goulet, J.-A. Anomaly detection with the Switching Kalman Filter for structural health monitoring. Struct. Control. Health Monit. 2018, 25, e2136. [Google Scholar] [CrossRef] [Green Version]
- Razaque, A.; Abenova, M.; Alotaibi, M.; Alotaibi, B.; Alshammari, H.; Hariri, S.; Alotaibi, A. Anomaly Detection Paradigm for Multivariate Time Series Data Mining for Healthcare. Appl. Sci. 2022, 12, 8902. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, J.; Li, X.; Jin, R. Data-Driven Anomaly Detection Approach for Time-Series Streaming Data. Sensors 2020, 20, 5646. [Google Scholar] [CrossRef] [PubMed]
- Mitiche, I.; McGrail, T.; Boreham, P.; Nesbitt, A.; Morison, G. Data-Driven Anomaly Detection in High-Voltage Transformer Bushings with LSTM Auto-Encoder. Sensors 2021, 21, 7426. [Google Scholar] [CrossRef]
- Pinto, R.; Gonçalves, G.; Delsing, J. Enabling data-driven anomaly detection by design in cyber-physical production systems. Cybersecurity 2022, 5, 9. [Google Scholar] [CrossRef]
- Andrade, J.R.; Rocha, C.; Silva, R.; Viana, J.P.; Bessa, R.J.; Gouveia, C.; Almeida, B.; Santos, R.J.; Louro, M.; Santos, P.M.; et al. Data-Driven Anomaly Detection and Event Log Profiling of SCADA Alarms. IEEE Access 2022, 10, 73758–73773. [Google Scholar] [CrossRef]
- Zhou, Y.; Liao, R.; Chen, Y. Study on Optimization of Data-Driven Anomaly Detection. In Proceedings of the 2022 International Conference on Data Science and Its Applications (ICoDSA), Bandung, Indonesia, 6–7 July 2022; pp. 123–127. [Google Scholar] [CrossRef]
- Anicia, Z.; Sara, B.; Christian, S.; Markus, M.; Hirokazu, S. Data-driven anomaly detection and diagnostics for changeover processes in biopharmaceutical drug product manufacturing. Chem. Eng. Res. Des. 2021, 167, 53–62. [Google Scholar] [CrossRef]
- Wei, W.; Wu, H.; Ma, H. An AutoEncoder and LSTM-Based Traffic Flow Prediction Method. Sensors 2019, 19, 2946. [Google Scholar] [CrossRef]
- Wei, J. A Machine Vision Anomaly Detection System to Industry 4.0 Based on Variational Fuzzy Autoencoder. Comput. Intell. Neurosci. 2022, 2022, 1945507. [Google Scholar] [CrossRef]
- Xu, L.; Xiong, W.; Zhou, M.; Chen, L. A Continuous Terminal Sliding-Mode Observer-Based Anomaly Detection Approach for Industrial Communication Networks. Symmetry 2022, 14, 124. [Google Scholar] [CrossRef]
- Marta, C.; Antonio, P.; Umberto, V. AutoLog: Anomaly detection by deep autoencoding of system logs. Expert Syst. Appl. 2022, 191, 116263. [Google Scholar] [CrossRef]
- Senthil, M.N.; Ganesh, G.D.; Ali, K.B.; Rajendra, P.M.; Mohammed, S.A. IADF-CPS: Intelligent Anomaly Detection Framework towards Cyber Physical Systems. Comput. Commun. 2022, 188, 1–89. [Google Scholar] [CrossRef]
- Huong, T.T.; Bac, P.T.; Quang, A.L.; Dan, M.N.; Cong, T.L.; Hoang, X.N.; Ha, T.D.; Hung, T.N.; Kim, P.T. Light-weight federated learning-based anomaly detection for time-series data in industrial control systems. Comput. Ind. 2022, 140, 103692. [Google Scholar] [CrossRef]
- Bin, L.; Jingzhao, C.; Yong, H. Mode division-based anomaly detection against integrity and availability attacks in industrial cyber-physical systems. Comput. Ind. 2022, 137, 103609. [Google Scholar] [CrossRef]
- Kareem, A.B.; Ejike Akpudo, U.; Hur, J.-W. An Integrated Cost-Aware Dual Monitoring Framework for SMPS Switching Device Diagnosis. Electronics 2021, 10, 2487. [Google Scholar] [CrossRef]
- Kareem, A.B.; Hur, J.-W. Towards Data-Driven Fault Diagnostics Framework for SMPS-AEC Using Supervised Learning Algorithms. Electronics 2022, 11, 2492. [Google Scholar] [CrossRef]
- Kareem, A.B.; Hur, J.-W. A Feature Engineering-Assisted CM Technology for SMPS Output Aluminium Electrolytic Capacitors (AEC) Considering D-ESR-Q-Z Parameters. Processes 2022, 10, 1091. [Google Scholar] [CrossRef]
- Akpudo, U.E.; Jang-Wook, H. A Multi-Domain Diagnostics Approach for Solenoid Pumps Based on Discriminative Features. IEEE Access 2020, 8, 175020–175034. [Google Scholar] [CrossRef]
- Akpudo, U.E.; Jang-Wook, H. An Automated Sensor Fusion Approach for the RUL Prediction of Electromagnetic Pumps. IEEE Access 2021, 9, 38920–38933. [Google Scholar] [CrossRef]
- Chao, J.; Ward, E.S.; Ober, R.J. Fisher information matrix for branching processes with application to electron-multiplying charge-coupled devices. Multidim. Syst. Sign Process. 2012, 23, 349–379. [Google Scholar] [CrossRef] [Green Version]
- Fujita, K.; Okada, K.; Katahira, K. The Fisher information matrix: A tutorial for calculation for decision making models. PsyArXiv 2022. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, D.; Song, G. On the physical significance of the Effective Independence method for sensor placement. J. Phys. Conf. Ser. 2017, 842, 012030. [Google Scholar] [CrossRef] [Green Version]
- Ewert, P.; Kowalski, C.T.; Jaworski, M. Comparison of the Effectiveness of Selected Vibration Signal Analysis Methods in the Rotor Unbalance Detection of PMSM Drive System. Electronics 2022, 11, 1748. [Google Scholar] [CrossRef]
- Misra, S.; Kumar, S.; Sayyad, S.; Bongale, A.; Jadhav, P.; Kotecha, K.; Abraham, A.; Gabralla, L.A. Fault Detection in Induction Motor Using Time Domain and Spectral Imaging-Based Transfer Learning Approach on Vibration Data. Sensors 2022, 22, 8210. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, C.; Liu, X.; Xiao, B.; Wang, Z. A Vibration Fault Signal Identification Method via SEST. Electronics 2022, 11, 1300. [Google Scholar] [CrossRef]
- Song, Y.; Zhan, J.; Li, Y.; Han, X. Vibration fault diagnosis of a gearbox using deep convolutional neural network. Measurement 2018, 131, 224–231. [Google Scholar]
- Babich, E.; Scherbak, S.; Lubyankina, E.; Zhurikhina, V.; Lipovskii, A. Power Spectral Density Analysis for Optimizing SERS Structures. Sensors 2022, 22, 593. [Google Scholar] [CrossRef]
- Alam, R.-U.; Zhao, H.; Goodwin, A.; Kavehei, O.; McEwan, A. Differences in Power Spectral Densities and Phase Quantities Due to Processing of EEG Signals. Sensors 2020, 20, 6285. [Google Scholar] [CrossRef]
- Givnan, S.; Chalmers, C.; Fergus, P.; Ortega-Martorell, S.; Whalley, T. Anomaly Detection Using Autoencoder Reconstruction upon Industrial Motors. Sensors 2022, 22, 3166. [Google Scholar] [CrossRef]
- Nicholaus, I.T.; Park, J.R.; Jung, K.; Lee, J.S.; Kang, D.-K. Anomaly Detection of Water Level Using Deep Autoencoder. Sensors 2021, 21, 6679. [Google Scholar] [CrossRef]
- Kang, J.; Kim, C.-S.; Kang, J.W.; Gwak, J. Anomaly Detection of the Brake Operating Unit on Metro Vehicles Using a One-Class LSTM Autoencoder. Appl. Sci. 2021, 11, 9290. [Google Scholar] [CrossRef]
- Jin, J.; Chung, Y.; Park, J. Development of a Flowmeter Using Vibration Interaction between Gauge Plate and External Flow Analyzed by LSTM. Sensors 2020, 20, 5922. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Hong, J.-K. Comparative Performance Analysis of Vibration Prediction Using RNN Techniques. Electronics 2022, 11, 3619. [Google Scholar] [CrossRef]
- Huang, J.; Mo, J.; Zhang, J.; Ma, X. A Fiber Vibration Signal Recognition Method Based on CNN-CBAM-LSTM. Appl. Sci. 2022, 12, 8478. [Google Scholar] [CrossRef]
- Gu, K.; Zhang, Y.; Liu, X.; Li, H.; Ren, M. DWT-LSTM-Based Fault Diagnosis of Rolling Bearings with Multi-Sensors. Electronics 2021, 10, 2076. [Google Scholar] [CrossRef]
- Kwon, J.E.; Shifat, T.A.; Kareem, A.B.; Hur, J.-W. RUL Prediction of Switched Mode Power Supply Using a Kalman Filter Assisted Deep Neural Network. Processes 2022, 10, 55. [Google Scholar] [CrossRef]
- Curreri, F.; Patanè, L.; Xibilia, M.G. RNN- and LSTM-Based Soft Sensors Transferability for an Industrial Process. Sensors 2021, 21, 823. [Google Scholar] [CrossRef]
- Wang, X.; Huang, T.; Zhu, K.; Zhao, X. LSTM-Based Broad Learning System for Remaining Useful Life Prediction. Mathematics 2022, 10, 2066. [Google Scholar] [CrossRef]
- Diro, A.; Chilamkurti, N.; Nguyen, V.-D.; Heyne, W. A Comprehensive Study of Anomaly Detection Schemes in IoT Networks Using Machine Learning Algorithms. Sensors 2021, 21, 8320. [Google Scholar] [CrossRef]
- Patcha, A.; Park, J.-M. An overview of anomaly detection techniques: Existing solutions and latest technological trends. Comput. Netw. 2007, 51, 3448–3470. [Google Scholar] [CrossRef]
- Darban, Z.Z.; Webb, G.I.; Pan, S.; Aggarwal, C.C.; Salehi, M. Deep Learning for Time Series Anomaly Detection: A Survey. arXiv 2022, arXiv:2211.05244. [Google Scholar]
- Elhalwagy, A.; Kalganova, T. Multi-Channel LSTM-Capsule Autoencoder Network for Anomaly Detection on Multivariate Data. Appl. Sci. 2022, 12, 11393. [Google Scholar] [CrossRef]
- Tziolas, T.; Papageorgiou, K.; Theodosiou, T.; Papageorgiou, E.; Mastos, T.; Papadopoulos, A. Autoencoders for Anomaly Detection in an Industrial Multivariate Time Series Dataset. Eng. Proc. 2022, 18, 23. [Google Scholar] [CrossRef]
- Shin, G.-H.; Hur, J.-W. Correlation Coefficient Based Optimal Vibration Sensor Placement and Number. Sensors 2022, 22, 1207. [Google Scholar] [CrossRef]
- Yuen, B.; Hoang, M.T.; Dong, X.; Lu, T. Universal activation function for machine learning. Sci. Rep. 2021, 11, 18757. [Google Scholar] [CrossRef] [PubMed]
- Shiv, R.D.; Satish, K.S.; Bidyut, B.C. Activation functions in deep learning: A comprehensive survey and benchmark. Neurocomputing 2022, 503, 92–108. [Google Scholar] [CrossRef]
- Anyanwu, G.O.; Nwakanma, C.I.; Lee, J.M.; Kim, D.S. Optimization of RBF-SVM Kernel using Grid Search Algorithm for DDoS Attack Detection in SDN-based VANET. IEEE Internet Things J. 2022. [Google Scholar] [CrossRef]
- Okwuosa, C.N.; Hur, J.-W. A Filter-Based Feature-Engineering-Assisted SVC Fault Classification for SCIM at Minor-Load Conditions. Energies 2022, 15, 7597. [Google Scholar] [CrossRef]
- Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. Adv. Neural Inf. Process. Syst. 2014, 27. [Google Scholar]
- Essien, A.; Giannetti, C. A Deep Learning Model for Smart Manufacturing Using Convolutional LSTM Neural Network Autoencoders. IEEE Trans. Ind. Inform. 2020, 16, 6069–6078. [Google Scholar] [CrossRef] [Green Version]
- Sagheer, A.; Kotb, M. Unsupervised Pre-training of a Deep LSTM-based Stacked Autoencoder for Multivariate Time Series Forecasting Problems. Sci. Rep. 2019, 9, 19038. [Google Scholar] [CrossRef]
- Mengyang, Z.; Aadarsh, J.; Quan, L.; Bryan, A.M.; Anita, M.; Le, L.; Bennett, A.L.; Matthew, J.T.; Yuankai, H. Faster mean-shift: GPU-accelerated clustering for cosine embedding-based cell segmentation and tracking. Med. Image Anal. 2021, 71, 102048. [Google Scholar] [CrossRef]
- Yao, T.; Qu, C.; Liu, Q.; Deng, R.; Tian, Y.; Xu, J.; Jha, A.; Bao, S.; Zhao, M.; Fogo, A.; et al. Compound figure separation of biomedical images with side loss. In Deep Generative Models, and Data Augmentation, Labelling, and Imperfections; Springer: Cham, Switzerland, 2021; pp. 173–183. [Google Scholar] [CrossRef]
- Jin, B.; Cruz, L.; Gonçalves, N. Pseudo RGB-D Face Recognition. IEEE Sensors J. 2022, 22, 21780–21794. [Google Scholar] [CrossRef]
- Jin, B.; Cruz, L.; Gonçalves, N. Deep facial diagnosis: Deep transfer learning from face recognition to facial diagnosis. IEEE Access 2020, 8, 123649–123661. [Google Scholar] [CrossRef]
- Leevy, J.L.; Khoshgoftaar, T.M.; Bauder, R.A.; Seliya, N. A survey on addressing high-class imbalance in big data. J Big Data 2018, 5, 42. [Google Scholar] [CrossRef]
- Sauber-Cole, R.; Khoshgoftaar, T.M. The use of generative adversarial networks to alleviate class imbalance in tabular data: A survey. J. Big Data 2022, 9, 98. [Google Scholar] [CrossRef]
Model Architecture | Description |
---|---|
Number of Classes | 2 |
Number of Layers | 7 |
Batch Size | 128 |
Number of Epochs | 100 |
Dropout Rate | 0.001 |
Optimizer | Adam |
Activation Function | Softmax, ReLU, and Sigmoid |
Loss Function | MSE |
System | Item | Description |
---|---|---|
VCSRS Overall Spec. | Size | 2820 W × 1540 L × 3280 H |
Full Load | 2000 kg | |
Speed | 0.6 m/s | |
Size | 1900 W × 300 L × 200 H | |
Pallet Spec. | Quantity | 20 EA |
Load Capacity | 100 kg |
Algorithm | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | Cost (s) |
---|---|---|---|---|---|
AE-LSTM | 97.70 | 100.00 | 95.20 | 92.43 | 2517.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Do, J.S.; Kareem, A.B.; Hur, J.-W. LSTM-Autoencoder for Vibration Anomaly Detection in Vertical Carousel Storage and Retrieval System (VCSRS). Sensors 2023, 23, 1009. https://doi.org/10.3390/s23021009
Do JS, Kareem AB, Hur J-W. LSTM-Autoencoder for Vibration Anomaly Detection in Vertical Carousel Storage and Retrieval System (VCSRS). Sensors. 2023; 23(2):1009. https://doi.org/10.3390/s23021009
Chicago/Turabian StyleDo, Jae Seok, Akeem Bayo Kareem, and Jang-Wook Hur. 2023. "LSTM-Autoencoder for Vibration Anomaly Detection in Vertical Carousel Storage and Retrieval System (VCSRS)" Sensors 23, no. 2: 1009. https://doi.org/10.3390/s23021009
APA StyleDo, J. S., Kareem, A. B., & Hur, J. -W. (2023). LSTM-Autoencoder for Vibration Anomaly Detection in Vertical Carousel Storage and Retrieval System (VCSRS). Sensors, 23(2), 1009. https://doi.org/10.3390/s23021009