Simulation of Layer Thickness Measurement in Thin Multi-Layered Material by Variable-Focus Laser Ultrasonic Testing
Abstract
:1. Introduction
2. Principle of VRLUT-Based Layer Thickness Measurement Method
2.1. Focus Pattern of Laser-Generated Bulk Waves
2.2. Layer Thickness Measurement Method
3. Simulation of Thickness Measurement by VRLUT
3.1. Simulation Model and Main Parameters
3.2. Calibration of Wave Velocity and Focal Angle
4. Measurement Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.; Liu, Y.; Zhang, C.; Luo, G.; Liu, H.; Shen, Q. Fabrication and Properties of W-SiCP/Cu Composites by Hot Pressing Sintering. Key Eng. Mater. 2016, 697, 207–210. [Google Scholar] [CrossRef]
- Sarkeeva, A.; Kruglov, A.; Lutfullin, R.; Gladkovskiy, S.V.; Zhilyaev, A.P.; Mulyukov, R.R. Characteristics of the mechanical behavior of Ti-6Al-4V multilayer laminate under impact loading. Compos. Part B Eng. 2020, 187, 107838. [Google Scholar] [CrossRef]
- Padture, N.; Gell, M.; Jordan, E. Thermal Barrier Coatings for Gas-Turbine Engine Applications. Science 2002, 296, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Verboven, E.; Ju, B.; Kersemans, M. Comparative study of ultrasonic techniques for reconstructing the multilayer structure of composites. NDT E Int. 2021, 121, 102460. [Google Scholar] [CrossRef]
- Kolpatzeck, K.; Liu, X.; Haring, L.; Balzer, J.C.; Czylwik, A. Ultra-High Repetition Rate Terahertz Time-Domain Spectroscopy for Micrometer Layer Thickness Measurement. Sensors 2021, 21, 5389. [Google Scholar] [CrossRef]
- Islam, M.T.; Rahman, M.N.; Samsuzzaman, M.; Mansor, M.F.; Misran, N. Resonator-Inspired Metamaterial Sensor: Design and Experimental Validation for Measuring Thickness of Multi-Layered Structures. Sensors 2018, 18, 4213. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Bai, X.; Yang, K.; Ju, B.F. An ultrasonic methodology for determining the mechanical and geometrical properties of a thin layer using a deconvolution technique. Ultrasonics 2013, 53, 1377–1383. [Google Scholar] [CrossRef]
- Lu, Z.; Yang, C.; Qin, D.; Luo, Y.; Momayez, M. Estimating ultrasonic time-of-flight through echo signal envelope and modified Gauss Newton method. Measurement 2016, 94, 355–363. [Google Scholar] [CrossRef]
- Chapon, A.; Pereira, D.; Toews, M.; Belanger, P. Deconvolution of ultrasonic signals using a convolutional neural network. Ultrasonics 2021, 111, 106312. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, C.; Sun, A.; Bai, X.; Ju, B.; Shen, Q. Numerical and experimental analysis of a focused reflected wave in a multi-layered material based on a ray model. Ultrasonics 2018, 86, 41–48. [Google Scholar] [CrossRef]
- Ma, Z.; Luo, Z.; Lin, L.; Krishnaswamy, S.; Lei, M. Quantitative characterization of the interfacial roughness and thickness of inhomogeneous coatings based on ultrasonic reflection coefficient phase spectrum. NDT E Int. 2019, 102, 16–25. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, D.; Dong, F.; Wang, R.; Yang, Q.; Wang, X.; Xue, R. Solid–liquid interface reconstruction for sandwich structure metal plate via laser-ultrasonic techniques. Rev. Sci. Instrum. 2021, 92, 123003. [Google Scholar] [CrossRef] [PubMed]
- Geng, X.; Zhang, C.; Zhang, J.; Luo, G.; Shen, Q. Simultaneous measurement of layer thicknesses in thin layered materials using the phase of ultrasonic reflection coefficient spectrum. Appl. Acoust. 2022, 195, 108835. [Google Scholar] [CrossRef]
- Zhang, K.; Li, S.; Zhou, Z. Detection of disbonds in multi-layer bonded structures using the laser ultrasonic pulse-echo mode. Ultrasonics 2019, 94, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Yi, K.; Liu, P.; Park, S.; Sohn, H. Femtosecond laser ultrasonic inspection of a moving object and its application to estimation of silicon wafer coating thickness. Opt. Lasers Eng. 2022, 148, 106778. [Google Scholar] [CrossRef]
- Cielo, P.; Nadeau, F.; Lamontagne, M. Laser generation of convergent acoustic waves for materials inspection. J. Ultrason. 1985, 23, 55–62. [Google Scholar] [CrossRef]
- Wang, X.; Littman, M.G.; McManus, J.B.; Tadi, M.; Kim, Y.S.; Askar, A.; Rabitz, H. Focused bulk ultrasonic waves generated by ring-shaped laser illumination and application to flaw detection. J. Appl. Phys. 1996, 80, 4274–4281. [Google Scholar] [CrossRef] [Green Version]
- Guan, J.; Shen, Z.; Ni, X.; Lu, J.; Wang, J.; Xu, B. Numerical simulation of the ultrasonic waves generated by ring-shaped laser illumination patterns. Opt. Laser Technol. 2007, 39, 1281–1287. [Google Scholar] [CrossRef]
- Dixon, S.; Harrison, T.; Fan, Y.; Petcher, P.A. Thermoelastic laser generated ultrasound using a ring source. J. Phys. D Appl. Phys. 2012, 45, 175103. [Google Scholar] [CrossRef]
- Pei, C.; Yi, D.; Liu, T.; Kou, X.; Chen, Z. Fully noncontact measurement of inner cracks in thick specimen with fiber-phased-array laser ultrasonic technique. NDT E Int. 2020, 113, 102273. [Google Scholar] [CrossRef]
- Feng, W.; Yang, D.; Guo, Y.; Chang, Y. Finite element modeling of bulk ultrasonic waves generated by ring-shaped laser illumination in a diamond anvil cell. Opt. Express 2012, 20, 6429–6438. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Cai, M.; Lu, T.; Yu, F.; Yao, F.; Qi, S.; Liu, L. Finite element simulation of dual-laser source generated ultrasonic waves for detection of branched-breaking defects. Optik 2021, 225, 165263. [Google Scholar] [CrossRef]
Layer | Thermal Conductive Coefficient λ (W·m−1·K) | Thermal Capacity c (J·kg−1·K−1) | Density ρ (kg·m3) | Young’s Modulus E (GPa) | Poisson’s Ratio σ | Thermal Expansion Coefficient α (K−1) |
---|---|---|---|---|---|---|
Copper | 400.0 | 385 | 8960 | 110 | 0.35 | 1.70 × 10−5 |
Tungsten | 175.0 | 132 | 17800 | 360 | 0.28 | 0.45 × 10−5 |
Aluminum | 238.0 | 900 | 2700 | 70 | 0.33 | 1.70 × 10−5 |
Iron | 76.2 | 440 | 7870 | 200 | 0.29 | 1.22 × 10−5 |
Layer | Measured Thickness | Real Thickness | Relative Error |
---|---|---|---|
Copper (120 μm) | 121.59 μm | 120.00 μm | 1.33% |
Tungsten | 80.54 μm | 80.00 μm | 0.68% |
Aluminum | 50.19 μm | 50.00 μm | 0.38% |
Iron | 50.30 μm | 50.00 μm | 0.60% |
Copper (30 μm) | 30.36 μm | 30.00 μm | 1.20% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, J.; Li, Z.; Pei, C.; Luo, G. Simulation of Layer Thickness Measurement in Thin Multi-Layered Material by Variable-Focus Laser Ultrasonic Testing. Sensors 2023, 23, 694. https://doi.org/10.3390/s23020694
Qiu J, Li Z, Pei C, Luo G. Simulation of Layer Thickness Measurement in Thin Multi-Layered Material by Variable-Focus Laser Ultrasonic Testing. Sensors. 2023; 23(2):694. https://doi.org/10.3390/s23020694
Chicago/Turabian StyleQiu, Jinxing, Zhengying Li, Cuixiang Pei, and Guoqiang Luo. 2023. "Simulation of Layer Thickness Measurement in Thin Multi-Layered Material by Variable-Focus Laser Ultrasonic Testing" Sensors 23, no. 2: 694. https://doi.org/10.3390/s23020694
APA StyleQiu, J., Li, Z., Pei, C., & Luo, G. (2023). Simulation of Layer Thickness Measurement in Thin Multi-Layered Material by Variable-Focus Laser Ultrasonic Testing. Sensors, 23(2), 694. https://doi.org/10.3390/s23020694