Packaging and Optimization of a Capacitive Biosensor and Its Readout Circuit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensor Coating with ORDYL SY 300
2.2. Connector Design
2.3. Packaging Design of Readout Circuit
- The base (blue) on which the board was mounted;
- Bottom lid (red) for the lower part of the readout circuit;
- Top lid (green) for the upper part of the readout circuit.
2.4. Data Processing and Evaluation
3. Results and Discussion
3.1. Photosensitive Layer on Interdigitated Surface
3.2. Connector Development
- Packaging base;
- Driver;
- Fixing cap;
- Sensor case.
3.3. Electronic Circuit Packaging
- The base of the package;
- The lid of the upper part;
- The bottom lid.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mattiasson, B.; Hedström, M. Capacitive biosensors for ultra-sensitive assays. TrAC Trends Anal. Chem. 2016, 79, 233–238. [Google Scholar] [CrossRef]
- Ertürk, G.; Mattiasson, B. Capacitive Biosensors and Molecularly Imprinted Electrodes. Sensors 2017, 17, 390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.; Sharma, A.; Ahmed, A.; Sundramoorthy, A.K.; Furukawa, H.; Arya, S.; Khosla, A. Recent Advances in Electrochemical Biosensors: Applications, Challenges, and Future Scope. Biosensors 2021, 11, 336. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.L.; Reaz, M.B.I.; Chowdhury, M.E.H. A Low Noise Capacitive Electromyography Monitoring System for Remote Healthcare Applications. IEEE Sens. J. 2020, 20, 3333–3342. [Google Scholar] [CrossRef]
- Lee, K.-H.; Choi, S.; Lee, J.O.; Yoon, J.-B.; Cho, G.-H. CMOS capacitive biosensor with enhanced sensitivity for label-free DNA detection. Dig. Tech. Pap.-IEEE Int. Solid-State Circuits Conf. 2012, 55, 120–121. [Google Scholar] [CrossRef]
- Pike, D.J.; Kapur, N.; Millner, P.A.; Stewart, D.I. Flow Cell Design for Effective Biosensing. Sensors 2013, 13, 58–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Syed, A.; Bhattacharya, S.; Chen, X.; Buttner, U.; Iordache, G.; Salama, K.; Ganetsos, T.; Valamontes, E.; Georgas, A.; et al. Ultra miniaturized InterDigitated electrodes platform for sensing applications. Microelectron. Eng. 2020, 225, 23955. [Google Scholar] [CrossRef]
- Giacomozzi, F.; Mulloni, V.; Resta, G.; Margesin, B. MEMS packaging by using dry film resist. In Proceedings of the 2015 XVIII AISEM Annual Conference, Trento, Italy, 3–5 February 2015; Volume 2015, pp. 12–15. [Google Scholar] [CrossRef]
- Velten, T.; Ruf, H.; Barrow, D.; Aspragathos, N.; Lazarou, P.; Jung, E.; Malek, C.; Richter, M.; Kruckow, J.; Wackerle, M. Packaging of bio-MEMS: Strategies, technologies, and applications. IEEE Trans. Adv. Packag. 2005, 28, 533–546. [Google Scholar] [CrossRef]
- Lancaster, A.; Keswani, M. Integrated circuit packaging review with an emphasis on 3D packaging. Integration 2018, 60, 204–212. [Google Scholar] [CrossRef]
- Exarchos, D.A.; Vasileiadis, A.; Matikas, T. Development of innovative sensing devises and methodologies for ensuring agri-food quality and safety. Proc. SPIE. 2022, 12045, 120450E. [Google Scholar] [CrossRef]
- Lee, J.K.; Stoffel, N.; Fite, K. Electronic packaging of sensors for lower limb prosthetics. In Proceedings of the 2012 IEEE 62nd Electronic Components and Technology Conference, San Diego, CA, USA, 29 May–1 June 2012; pp. 86–91. [Google Scholar] [CrossRef]
- Butler, J.; Bright, V.; Comtois, J. Advanced multichip module packaging of microelectromechanical systems. In Proceedings of the International Solid State Sensors and Actuators Conference (Transducers 97), Chicago, IL, USA, 19 June 1997; Volume 1, pp. 261–264. [Google Scholar] [CrossRef] [Green Version]
- Exarchos, D.A.; Sima, A.D.; Ananiadis, I.; Dalla, P.A.; Tragazikis, I.; Kordatou, T.; Farmaki, S.; Gontzamanis, A.; Kechagias, V.; Kechagias, L.; et al. Development and characterization of environmentally friendly multifunctional protective coatings. SPIE 2022, 12049, 120490A. [Google Scholar] [CrossRef]
- Morrissey, A.; Kelly, G.; Alderman, J.C. 3D packaging of a microfluidic system with sensory applications. SPIE 1997, 3224, 161–168. [Google Scholar] [CrossRef]
- Tehrani, B.K.; Cook, B.S.; Tentzeris, M.M. Inkjet-printed 3D interconnects for millimeter-wave system-on-package solutions. In Proceedings of the 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, USA, 22–27 May 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Park, E.S.; Jeon, J.; Subramanian, V.; Liu, T.-J.K. Inkjet-printed microshell encapsulation: A new zero-level packaging technology. In Proceedings of the 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), Paris, France, 29 January–2 February 2012; pp. 357–360. [Google Scholar] [CrossRef]
- Bahr, R.; Nauroze, A.; Su, W.; Tentzeris, M.M. Self-Actuating 3D Printed Packaging for Deployable Antennas. In Proceedings of the 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 30 May–2 June 2017; pp. 1425–1430. [Google Scholar] [CrossRef]
- Georgas, A.; Lampas, E.; Houhoula, D.; Skoufias, A.; Patsilinakos, S.; Tsafaridis, I.; Patrinos, G.; Adamopoulos, N.; Ferraro, A.; Hristoforou, E. ACE2-based capacitance sensor for rapid native SARS-CoV-2 detection in biological fluids and its correlation with real-time PCR. Biosens. Bioelectron. 2022, 202, 114021. [Google Scholar] [CrossRef] [PubMed]
- Georgas, A.; Agiannis, K.; Papakosta, V.; Angelopoulos, S.; Ferraro, A.; Hristoforu, E. A portable screening device for SARS-CoV-2 with smartphone readout. Eng. Proc. 2022, 16, 7. [Google Scholar]
- Georgas, A.; Agiannis, K.; Papakosta, V.; Priftis, P.; Angelopoulos, S.; Ferraro, A.; Hristoforou, E. A Biosensor Platform for Point-of-Care SARS-CoV-2 Screening. Biosensors 2022, 12, 487. [Google Scholar] [CrossRef] [PubMed]
- Kukharenka, E.; Farooqui, M.M.; Grigore, L.; Kraft, M.; Hollinshead, N. Electroplating moulds using dry film thick negative photoresist. J. Micromech. Microeng. 2003, 13, S67–S74. [Google Scholar] [CrossRef] [Green Version]
- Vulto, P.; Huesgen, T.; Albrecht, B.; Urban, G.A. A full-wafer fabrication process for glass microfluidic chips with integrated electroplated electrodes by direct bonding of dry film resist. J. Micromech. Microeng. 2009, 19, 077001. [Google Scholar] [CrossRef]
Base | Cap and Driver | Case | |
---|---|---|---|
Extrusion width | 0.18 mm | 0.2 mm | 0.16 mm |
Layer height | 0.10 mm | 0.12 mm | 0.10 mm |
Infill rate | 30% | 30% | 100% |
Print speed | 55 mm/s | 55 mm/s | 55 mm/s |
Base | Lids | |
---|---|---|
Extrusion width | 0.40 mm | 0.26 mm |
Layer height | 0.30 mm | 0.20 mm |
Infill rate | 30% | 30% |
Print speed | 55 mm/s | 55 mm/s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgas, A.; Nestoras, L.; Kanaris, A.I.; Angelopoulos, S.; Ferraro, A.; Hristoforou, E. Packaging and Optimization of a Capacitive Biosensor and Its Readout Circuit. Sensors 2023, 23, 765. https://doi.org/10.3390/s23020765
Georgas A, Nestoras L, Kanaris AI, Angelopoulos S, Ferraro A, Hristoforou E. Packaging and Optimization of a Capacitive Biosensor and Its Readout Circuit. Sensors. 2023; 23(2):765. https://doi.org/10.3390/s23020765
Chicago/Turabian StyleGeorgas, Antonios, Lampros Nestoras, Aris Ioannis Kanaris, Spyridon Angelopoulos, Angelo Ferraro, and Evangelos Hristoforou. 2023. "Packaging and Optimization of a Capacitive Biosensor and Its Readout Circuit" Sensors 23, no. 2: 765. https://doi.org/10.3390/s23020765
APA StyleGeorgas, A., Nestoras, L., Kanaris, A. I., Angelopoulos, S., Ferraro, A., & Hristoforou, E. (2023). Packaging and Optimization of a Capacitive Biosensor and Its Readout Circuit. Sensors, 23(2), 765. https://doi.org/10.3390/s23020765