A CMOS Image Readout Circuit with On-Chip Defective Pixel Detection and Correction
Abstract
:1. Introduction
2. Related Works
3. Methods
- 1.
- We use only four pixels in the -pixel neighborhood to compute the estimated value of , as follows:
- 2.
- 3.
- 4.
- 5.
Algorithm 1: Proposed detection method. |
4. Defective Pixel Detection and Correction Circuits
4.1. Defective Pixel Detection Circuit
4.2. Defective Pixel Correction Circuit
4.3. General Readout Circuit
5. Results
5.1. Physical Layout
5.2. Algorithm Parameters
5.3. Post-Layout Simulation Results
5.4. Algorithm and Circuit Performance
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El Gamal, A.; Eltoukhy, H. CMOS image sensors. IEEE Circuits Devices Mag. 2005, 21, 6–20. [Google Scholar] [CrossRef]
- Sarkar, M.; Bello, D.S.S.; van Hoof, C.; Theuwissen, A.J.P. Biologically Inspired CMOS Image Sensor for Fast Motion and Polarization Detection. IEEE Sens. J. 2013, 13, 1065–1073. [Google Scholar] [CrossRef]
- Kuroda, T. Essential Principles of Image Sensors; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Durini, D. High Performance Silicon Imaging: Fundamentals and Applications of Cmos and Ccd Sensors; Woodhead Publishing: Cambridge, MA, USA, 2020. [Google Scholar] [CrossRef]
- El-Desouki, M.; Jamal Deen, M.; Fang, Q.; Liu, L.; Tse, F.; Armstrong, D. CMOS image sensors for high speed applications. Sensors 2009, 9, 430–444. [Google Scholar] [CrossRef]
- Fossum, E.R.; Hynecek, J.; Tower, J.; Teranishi, N.; Nakamura, J.; Magnan, P.; Theuwissen, A.J.P. Special Issue on Solid-State Image Sensors. IEEE Trans. Electron Devices 2009, 56, 2376–2379. [Google Scholar] [CrossRef]
- Hassanli, K.; Sayedi, S.M.; Dehghani, R.; Jalili, A.; Wikner, J.J. A highly sensitive, low-power, and wide dynamic range CMOS digital pixel sensor. Sens. Actuators A Phys. 2015, 236, 82–91. [Google Scholar] [CrossRef]
- Cevik, I.; Huang, X.; Yu, H.; Yan, M.; Ay, S.U. An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability. Sensors 2015, 15, 5531–5554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Premachandran, V.; Kakarala, R. Measuring the effectiveness of bad pixel detection algorithms using the ROC curve. IEEE Trans. Consum. Electron. 2010, 56, 2511–2519. [Google Scholar] [CrossRef]
- Ghosh, S.; Froebrich, D.; Freitas, A. Robust autonomous detection of the defective pixels in detectors using a probabilistic technique. Appl. Opt. 2008, 47, 6904–6924. [Google Scholar] [CrossRef]
- An, J.; Lee, W.; Kim, J. Adaptive Detection and Concealment Algorithm of Defective Pixel. In Proceedings of the 2007 IEEE Workshop on Signal Processing Systems, Shanghai, China, 17–19 October 2007; pp. 651–656. [Google Scholar] [CrossRef]
- Tchendjou, G.T.; Simeu, E. Self-healing imager based on detection and conciliation of defective pixels. In Proceedings of the 2018 IEEE 24th International Symposium on On-Line Testing And Robust System Design (IOLTS), Platja d’Aro, Spain, 2–4 July 2018; pp. 251–254. [Google Scholar] [CrossRef]
- Tchendjou, G.T.; Simeu, E. Detection, Location and Concealment of Defective Pixels in Image Sensors. IEEE Trans. Emerg. Top. Comput. 2020, 9, 664–679. [Google Scholar] [CrossRef]
- Chen, Y.; Kang, J.U.; Zhang, G.; Cao, J.; Xie, Q.; Kwan, C. High-performance concealment of defective pixel clusters in infrared imagers. Appl. Opt. 2020, 59, 4081–4090. [Google Scholar] [CrossRef]
- Ahmed, F.N.; Khelifi, F.; Lawgaly, A.; Bouridane, A. A machine learning-based approach for picture acquisition timeslot prediction using defective pixels. Forensic Sci. Int. Digit. Investig. 2021, 39, 301311. [Google Scholar] [CrossRef]
- ISO. Ergonomic Requirements for Work with Visual Displays Based on Flat Panels Part 2: Ergonomic Requirements for Flat Panel Displays; Standard, International Organization for Standardization: Geneva, Switzerland, 2002. [Google Scholar]
- Chan, C.h. Dead Pixel Real-Time Detection Method for Image. U.S. Patent 7,589,770, 15 September 2009. [Google Scholar]
- Cho, C.Y.; Chen, T.M.; Wang, W.S.; Liu, C.N. Real-time photo sensor dead pixel detection for embedded devices. In Proceedings of the 2011 International Conference on Digital Image Computing: Techniques and Applications, Noosa, QLD, Australia, 6–8 December 2011; pp. 164–169. [Google Scholar] [CrossRef]
- Yongji, L.; Xiaojun, Y. A Design of Dynamic Defective Pixel Correction for Image Sensor. In Proceedings of the 2020 IEEE International Conference on Artificial Intelligence and Information Systems (ICAIIS), Dalian, China, 20–22 March 2020; pp. 713–716. [Google Scholar] [CrossRef]
- Mata-Carballeira, O.; Gutiérrez-Zaballa, J.; del Campo, I.; Martínez, V. An FPGA-Based Neuro-Fuzzy Sensor for Personalized Driving Assistance. Sensors 2019, 19, 4011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaudhary, V. Reconfigurable computing for smart vehicles. In Smart Cities; Springer: Berlin/Heidelberg, Germany, 2018; pp. 135–147. [Google Scholar] [CrossRef]
- Algredo-Badillo, I.; Morales-Rosales, L.A.; Hernández-Gracidas, C.A.; Cruz-Victoria, J.C.; Bautista, D.P.; Morales-Sandoval, M. Real time FPGA-ANN architecture for outdoor obstacle detection focused in road safety. J. Intell. Fuzzy Syst. 2019, 36, 4425–4436. [Google Scholar] [CrossRef]
- Mary, A.; Rose, L.; Karunakaran, A. Chapter 12 - FPGA-Based Detection and Tracking System for Surveillance Camera. In The Cognitive Approach in Cloud Computing and Internet of Things Technologies for Surveillance Tracking Systems; Peter, D., Alavi, A.H., Javadi, B., Fernandes, S.L., Eds.; Intelligent Data-Centric Systems, Academic Press: Cambridge, MA, USA, 2020; pp. 173–180. [Google Scholar] [CrossRef]
- Torres, V.A.; Jaimes, B.R.; Ribeiro, E.S.; Braga, M.T.; Shiguemori, E.H.; Velho, H.F.; Torres, L.C.; Braga, A.P. Combined weightless neural network FPGA architecture for deforestation surveillance and visual navigation of UAVs. Eng. Appl. Artif. Intell. 2020, 87, 103227. [Google Scholar] [CrossRef]
- Shan, Y. ADAS and Video Surveillance Analytics System Using Deep Learning Algorithms on FPGA. In Proceedings of the 2018 28th International Conference on Field Programmable Logic and Applications (FPL), Dublin, Ireland, 27–31 August 2018; pp. 465–4650. [Google Scholar] [CrossRef]
- Li, C.; Benezeth, Y.; Nakamura, K.; Gomez, R.; Yang, F. A robust multispectral palmprint matching algorithm and its evaluation for FPGA applications. J. Syst. Archit. 2018, 88, 43–53. [Google Scholar] [CrossRef]
- Khan, T.M.; Bailey, D.G.; Khan, M.A.; Kong, Y. Real-time iris segmentation and its implementation on FPGA. J. Real-Time Image Process. 2020, 17, 1089–1102. [Google Scholar] [CrossRef]
- Sharma, V.; Joshi, A.M. VLSI Implementation of Reliable and Secure Face Recognition System. Wirel. Pers. Commun. 2022, 122, 3485–3497. [Google Scholar] [CrossRef]
- Ohta, J. Smart CMOS Image Sensors and Applications; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Kim, D.; Song, M.; Choe, B.; Kim, S.Y. A Multi-Resolution Mode CMOS Image Sensor with a Novel Two-Step Single-Slope ADC for Intelligent Surveillance Systems. Sensors 2017, 17, 1497. [Google Scholar] [CrossRef]
- Lee, S.; Jeong, B.; Park, K.; Song, M.; Kim, S.Y. On-cmos image sensor processing for lane detection. Sensors 2021, 21, 3713. [Google Scholar] [CrossRef]
- Chaladze, G.; Kalatozishvili, L. Linnaeus 5 Dataset for Machine Learning, 2017. Available online: http://chaladze.com/l5/ (accessed on 28 April 2022).
- Chapman, G.H.; Leung, J.; Namburete, A.; Koren, I.; Koren, Z. Predicting pixel defect rates based on image sensor parameters. In Proceedings of the 2011 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems, Vancouver, BC, USA, 3–5 October 2011; pp. 408–416. [Google Scholar] [CrossRef]
- Chapman, G.H.; Thomas, R.; Koren, Z.; Koren, I. Empirical formula for rates of hot pixel defects based on pixel size, sensor area, and ISO. In Proceedings of the Sensors, Cameras, and Systems for Industrial and Scientific Applications XIV; IS&T/SPIE Electronic Imaging: Burlingame, CA, USA, 2013; Volume 8659, pp. 119–129. [Google Scholar] [CrossRef]
- Ongeval, C.V.; Jacobs, J.; Bosmans, H. Classification of artifacts in clinical digital mammography. In Digital Mammography; Springer: Berlin/Heidelberg, Germany, 2010; pp. 55–67. [Google Scholar] [CrossRef]
- Mijatović, L.; Dean, H.; Rožić, M. Implementation of algorithm for detection and correction of defective pixels in FPGA. In Proceedings of the 2012 35th International Convention MIPRO, Opatija, Croatia, 21–25 May 2012; pp. 1731–1735. [Google Scholar]
- El-Yamany, N. Robust Defect Pixel Detection and Correction for Bayer Imaging Systems. Electron. Imaging 2017, 2017, 46–51. [Google Scholar] [CrossRef]
- Tchendjou, G.T.; Simeu, E. Self-Healing Image Sensor Using Defective Pixel Correction Loop. In Proceedings of the 2019 International Conference on Control, Automation and Diagnosis (ICCAD), Grenoble, France, 2–4 July 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Tchendjou, G.T.; Simeu, E. Defective pixel analysis for image sensor online diagnostic and self-healing. In Proceedings of the 2019 IEEE 37th VLSI Test Symposium (VTS), Monterey, CA, USA, 23–25 April 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Kumar, A.; Sarkar, S.; Agarwal, R. A novel algorithm and hardware implementation for correcting sensor non-uniformities in infrared focal plane array based staring system. Infrared Phys. Technol. 2007, 50, 9–13. [Google Scholar] [CrossRef]
- Hameed, R.; Qadeer, W.; Wachs, M.; Azizi, O.; Solomatnikov, A.; Lee, B.C.; Richardson, S.; Kozyrakis, C.; Horowitz, M. Understanding sources of inefficiency in general-purpose chips. In Proceedings of the 37th Annual International Symposium on Computer Architecture, New York, NY, USA, 19–23 June 2010; pp. 37–47. [Google Scholar] [CrossRef] [Green Version]
- Allen, P.E.; Holberg, D.R. CMOS Analog Circuit Design; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Jendernalik, W.; Blakiewicz, G.; Jakusz, J.; Szczepanski, S.; Piotrowski, R. An analog sub-miliwatt CMOS image sensor with pixel-level convolution processing. IEEE Trans. Circuits Syst. I Regul. Pap. 2013, 60, 279–289. [Google Scholar] [CrossRef]
- Ginhac, D.; Dubois, J.; Heyrman, B.; Paindavoine, M. A high speed programmable focal-plane SIMD vision chip. Analog Integr. Circuits Signal Process. 2010, 65, 389–398. [Google Scholar] [CrossRef]
- Garcia-Lamont, J. Analogue CMOS prototype vision chip with prewitt edge processing. Analog Integr. Circuits Signal Process. 2012, 71, 507–514. [Google Scholar] [CrossRef]
- Suarez, M.; Brea, V.M.; Fernandez-Berni, J.; Carmona-Galan, R.; Cabello, D.; Rodriguez-Vazquez, A. Low-power CMOS vision sensor for Gaussian pyramid extraction. IEEE J. Solid-State Circuits 2016, 52, 483–495. [Google Scholar] [CrossRef]
- Gottardi, M.; Lecca, M. A 64 × 64 Pixel Vision Sensor for Local Binary Pattern Computation. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 66, 1831–1839. [Google Scholar] [CrossRef]
- Young, C.; Omid-Zohoor, A.; Lajevardi, P.; Murmann, B. A data-compressive 1.5/2.75-bit log-gradient QVGA image sensor with multi-scale readout for always-on object detection. IEEE J. Solid-State Circuits 2019, 54, 2932–2946. [Google Scholar] [CrossRef]
- Jin, M.; Noh, H.; Song, M.; Kim, S.Y. Design of an edge-detection cmos image sensor with built-in mask circuits. Sensors 2020, 20, 3649. [Google Scholar] [CrossRef]
- Zhong, X.; Law, M.K.; Tsui, C.Y.; Bermak, A. A fully dynamic multi-mode CMOS vision sensor with mixed-signal cooperative motion sensing and object segmentation for adaptive edge computing. IEEE J. Solid-State Circuits 2020, 55, 1684–1697. [Google Scholar] [CrossRef]
- Hsu, T.H.; Chen, Y.R.; Liu, R.S.; Lo, C.C.; Tang, K.T.; Chang, M.F.; Hsieh, C.C. A 0.5-V real-time computational CMOS image sensor with programmable kernel for feature extraction. IEEE J. Solid-State Circuits 2020, 56, 1588–1596. [Google Scholar] [CrossRef]
- Valenzuela, W.; Soto, J.E.; Zarkesh-Ha, P.; Figueroa, M. Face recognition on a smart image sensor using local gradients. Sensors 2021, 21, 2901. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, W.; Saavedra, A.; Zarkesh-Ha, P.; Figueroa, M. Motion-Based Object Location on a Smart Image Sensor Using On-Pixel Memory. Sensors 2022, 22, 6538. [Google Scholar] [CrossRef] [PubMed]
- Chapman, G.H.; Koren, I.; Koren, Z.; Dudas, J.; Jung, C. Methods and Apparatus for Detecting Defects in Imaging Arrays by Image Analysis. U.S. Patent 8,009,209, 2011. [Google Scholar]
- Yang, M.; Chen, S.; Wu, X.; Fu, W.; Huang, Z. Identification and replacement of defective pixel based on Matlab for IR sensor. Front. Optoelectron. China 2011, 4, 434–437. [Google Scholar] [CrossRef]
- Palmisano, G.; Palumbo, G.; Pennisi, S. Design procedure for two-stage CMOS transconductance operational amplifiers: A tutorial. Analog Integr. Circuits Signal Process. 2001, 27, 179–189. [Google Scholar] [CrossRef]
- Sabry, M.N.; Omran, H.; Dessouky, M. Systematic design and optimization of operational transconductance amplifier using gm/ID design methodology. Microelectron. J. 2018, 75, 87–96. [Google Scholar] [CrossRef]
- Razavi, B. Design of Analog CMOS Integrated Circuits; IRWIN ELECTRONICS & COMPUTER E, McGraw-Hill: Los Angeles, CA, USA, 2017. [Google Scholar]
- Baker, R.J. CMOS: Circuit Design, Layout, and Simulation; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Soleimani, M. Design and Implementation of Voltage—Mode MIN/MAX Circuits. J. Eng. Sci. Technol. Rev. 2015, 8, 166–171. [Google Scholar] [CrossRef]
- Vornicu, I.; Carmona-Galán, R.; Rodríguez-Vázquez, Á. Compensation of PVT variations in ToF imagers with in-pixel TDC. Sensors 2017, 17, 1072. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Park, S.; Park, S.Y.; Cho, J.; Yoon, E. A 272.49 pJ/pixel CMOS image sensor with embedded object detection and bio-inspired 2D optic flow generation for nano-air-vehicle navigation. In Proceedings of the 2017 Symposium on VLSI Circuits, Kyoto, Japan, 5–8 June 2017; pp. C294–C295. [Google Scholar] [CrossRef]
- Park, K.; Song, M.; Kim, S.Y. The design of a single-bit CMOS image sensor for iris recognition applications. Sensors 2018, 18, 669. [Google Scholar] [CrossRef] [Green Version]
- Nazhamaiti, M.; Xu, H.; Liu, Z.; Chen, Y.; Wei, Q.; Wu, X.; Qiao, F. NS-MD: Near-Sensor Motion Detection with Energy Harvesting Image Sensor for Always-On Visual Perception. IEEE Trans. Circuits Syst. II Express Briefs. 2021, 68, 3078–3082. [Google Scholar] [CrossRef]
- Nomura, T.; Zhang, R.; Nakashima, Y. An Energy Efficient Stochastic+Spiking Neural Network. Bull. Netw. Comput. Syst. Softw. 2021, 10, 30–35. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Portilla, B.M.; Valenzuela, W.; Zarkesh-Ha, P.; Figueroa, M. A CMOS Image Readout Circuit with On-Chip Defective Pixel Detection and Correction. Sensors 2023, 23, 934. https://doi.org/10.3390/s23020934
López-Portilla BM, Valenzuela W, Zarkesh-Ha P, Figueroa M. A CMOS Image Readout Circuit with On-Chip Defective Pixel Detection and Correction. Sensors. 2023; 23(2):934. https://doi.org/10.3390/s23020934
Chicago/Turabian StyleLópez-Portilla, Bárbaro M., Wladimir Valenzuela, Payman Zarkesh-Ha, and Miguel Figueroa. 2023. "A CMOS Image Readout Circuit with On-Chip Defective Pixel Detection and Correction" Sensors 23, no. 2: 934. https://doi.org/10.3390/s23020934
APA StyleLópez-Portilla, B. M., Valenzuela, W., Zarkesh-Ha, P., & Figueroa, M. (2023). A CMOS Image Readout Circuit with On-Chip Defective Pixel Detection and Correction. Sensors, 23(2), 934. https://doi.org/10.3390/s23020934