State of the Art and Future Perspectives of Atmospheric Chemical Sensing Using Unmanned Aerial Vehicles: A Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
- In the first step, we chose the most comprehensive and reliable databases with standardized results related to all applications of sensors embedded in chemical sensing UAVs. We then analysed selected articles, removing all research outside the topic of analysis.
- The evolution of the number of articles published in the selected period was analysed to highlight the expansion and trend in publication output in the literature.
- We analysed and explored the most cited articles to identify the most impactful research in the field.
- The most influential countries and journals and the importance of these countries in the study subject were assessed.
- A keyword analysis was elaborated upon to investigate and analyse the most important and trending topics keywords in the search area.
- Finally, we disclosed the research trend and future direction in air sensing by UAV.
2.1. Selection of Research Databases
2.2. Data Research Criteria
2.3. Selection and Organization Procedures
2.4. Bibliometric Analysis
3. Results and Discussion
3.1. Temporal Evolution of Publications
Platforms and Sensing Technologies for UAV-Based Chemical Sensing
3.2. The Top 10 Most Cited Articles and Their Relevant Characteristics
3.3. Most Influential Countries and Journals
3.4. Keyword Mapping
3.5. Trends in UAV-Based Sensors to Monitor Air Pollutant Research
3.6. Study Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lewis, A.C.; Lee, J.D.; Edwards, P.M.; Shaw, M.D.; Evans, M.J.; Moller, S.J.; Smith, K.R.; Buckley, J.W.; Ellis, M.; Gillot, S.R.; et al. Evaluating the performance of low cost chemical sensors for air pollution research. Faraday Discuss. 2016, 189, 85–103. [Google Scholar] [CrossRef]
- Nazar, W.; Niedoszytko, M. Air Pollution in Poland: A 2022 Narrative Review with Focus on Respiratory Diseases. Int. J. Environ. Res. Public Health 2022, 19, 895. [Google Scholar] [CrossRef]
- Jacobson, M.Z.; Kaufman, Y.J. Wind reduction by aerosol particles. Geophys. Res. Lett. 2006, 33, L24814. [Google Scholar] [CrossRef]
- Hansen, J.; Nazarenko, L. Soot climate forcing via snow and ice albedos. Proc. Natl. Acad. Sci. USA 2004, 101, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Jońca, J.; Pawnuk, M.; Bezyk, Y.; Arsen, A.; Sówka, I. Drone-Assisted Monitoring of Atmospheric Pollution—A Comprehensive Review. Sustainability 2022, 1418, 11516. [Google Scholar] [CrossRef]
- Lambey, V.; Prasad, A.D. A review on air quality measurement using an Unmanned Aerial Vehicle. Water Air Soil Pollut. 2021, 232, 109. [Google Scholar] [CrossRef]
- Curry, J.A.; Maslanik, J.; Holland, G.; Pinto, J. Applications of Aerosondes in the Arctic. Bull. Am. Meteorol. Soc. 2004, 85, 1855–1862. [Google Scholar] [CrossRef]
- Burgués, J.; Marco, S. Environmental chemical sensing using small drones: A review. Sci. Total Environ. 2020, 748, 141172. [Google Scholar] [CrossRef]
- Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef]
- Centobelli, P.; Cerchione, R.; Chiaroni, D.; Del Vecchio, P.; Urbinati, A. Designing business models in circular economy: A systematic literature review and research agenda. Bus. Strategy Environ. 2020, 29, 1734–1749. [Google Scholar] [CrossRef]
- Chistov, V.; Aramburu, N.; Carrillo-Hermosilla, J. Open eco-innovation: A bibliometric review of emerging research. J. Clean. Prod. 2021, 311, 127627. [Google Scholar] [CrossRef]
- Sarkar, A.; Wang, H.; Rahman, A.; Memon, W.H.; Qian, L. A bibliometric analysis of sustainable agriculture: Based on the Web of Science (WOS) platform. Environ. Sci. Pollut. Res. 2022, 29, 38928–38949. [Google Scholar] [CrossRef] [PubMed]
- Casillas, J.; Acedo, F. Evolution of the intellectual structure of family business literature: A bibliometric study of FBR. Fam. Bus. Rev. 2007, 20, 141–162. [Google Scholar] [CrossRef]
- Brika, S.K.M.; Algamdi, A.; Chergui, K.; Musa, A.A.; Zouaghi, R. Quality of Higher Education: A Bibliometric Review Study. Front. Educ. 2021, 6, 666087. [Google Scholar] [CrossRef]
- Börner, J.; Marinho, E.; Wunder, S. Mixing Carrots and Sticks to Conserve Forests in the Brazilian Amazon: A Spatial Probabilistic Modeling Approach. PLoS ONE 2015, 10, e0116846. [Google Scholar] [CrossRef]
- Santana, L.S.; Ferraz, G.A.E.S.; Teodoro, A.J.D.S.; Santana, M.S.; Rossi, G.; Palchetti, E. Advances in Precision Coffee Growing Research: A Bibliometric Review. Agronomy 2021, 11, 1557. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Abdollahi, A.; Zailani, S.; Iranmanesh, M.; Ghobakhloo, M. Digitalization in food supply chains: A bibliometric review and key-route main path analysis. Sustainability 2021, 14, 83. [Google Scholar] [CrossRef]
- Tăbăcaru, S. Web of Science Versus Scopus: Journal Coverage Overlap Analysis; Texas A&M University Libraries: Killeen, TX, USA, 2019. [Google Scholar]
- Moed, H.F.; Markusova, V.; Akoev, M. Trends in Russian research output indexed in Scopus and Web of Science. Scientometrics 2018, 116, 1153–1180. [Google Scholar] [CrossRef]
- Geng, D.; Feng, Y.; Zhu, Q. Sustainable design for users: A literature review and bibliometric analysis. Environ. Sci. Pollut. Res. 2020, 27, 29824–29836. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L.A. Comparison of Two Techniques for Bibliometric Mapping: Multidimensional Scaling and VOS. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 2405–2416. [Google Scholar] [CrossRef]
- Merton, R. The sociology of science: An episodic memoir. In The Sociology of Science in Europe; Southern Illinois University Press: Carbondale, IL, USA, 1977; pp. 3–141. [Google Scholar]
- Chwaleba, A.; Olejnik, A.; Rapacki, T.; Tuśnio, N. Analysis of capability of air pollution monitoring from an unmanned aircraft. Aviation 2014, 18, 13–19. [Google Scholar] [CrossRef]
- Villa, T.F.; Salimi, F.; Morton, K.; Morawska, L.; Gonzalez, F. Development and validation of a UAV based system for air pollution measurements. Sensors 2016, 16, 2202. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.R.; Wang, D.; Wang, Z.; Gao, Y.; Lu, S. A study of vertical distribution patterns of PM2.5 concentrations based on ambient monitoring with unmanned aerial vehicles: A case in Hangzhou, China. Atmos. Environ. 2015, 123, 357–369. [Google Scholar] [CrossRef]
- Merlaud, A.; Tack, F.; Constantin, D.; Georgescu, L.; Maes, J.; Fayt, C.; Mingireanu, F.; Schuettemeyer, D.; Meier, A.C.; Schönardt, A.; et al. The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) and its operations from an unmanned aerial vehicle (UAV) during the AROMAT campaign. Atmos. Meas. Tech. 2018, 11, 551–567. [Google Scholar] [CrossRef]
- Allen, G.; Hollingsworth, P.; Kabbabe, K.; Pitt, J.R.; Mead, M.I.; Illingworth, S.; Roberts, G.; Bourn, M.; Shallcross, D.E.; Percival, C.J. The development and trial of an Unmanned Aerial System for the measurement of methane flux from landfill and greenhouse gas emission hotspots. Waste Manag. 2019, 87, 883–892. [Google Scholar] [CrossRef]
- Corbett, A.; Smith, B. A Study of a Miniature TDLAS System Onboard Two Unmanned Aircraft to Independently Quantify Methane Emissions from Oil and Gas Production Assets and Other Industrial Emitters. Atmosphere 2022, 13, 804. [Google Scholar] [CrossRef]
- Nathan, B.J.; Golston, L.M.; O’Brien, A.S.; Ross, K.; Harrison, W.A.; Tao, L.; Lary, D.J.; Johnson, D.R.; Covington, A.N.; Clark, N.N.; et al. Near-field characterization of methane emission variability from a compressor station using a model aircraft. Environ. Sci. Technol. 2015, 49, 7896–7903. [Google Scholar] [CrossRef] [PubMed]
- Harrison, W.A.; Lary, D.J.; Nathan, B.J.; Moore, A.G. Using remote control aerial vehicles to study variability of airborne particulates. Air Soil Water Res. 2015, 8, 43–51. [Google Scholar] [CrossRef]
- Li, X.B.; Wang, D.S.; Lu, Q.C.; Peng, Z.R.; Wang, Z.Y. Investigating vertical distribution patterns of lower tropospheric PM2.5 using unmanned aerial vehicle measurements. Atmos. Environ. 2018, 173, 62–71. [Google Scholar] [CrossRef]
- Lu, S.J.; Wang, D.; Wang, Z.; Li, B.; Peng, Z.R.; Li, X.B.; Gao, Y. Investigating the role of meteorological factors in the vertical variation in PM2.5 by unmanned aerial vehicle measurement. Aerosol Air Qual. Res. 2019, 19, 1493–1507. [Google Scholar] [CrossRef]
- Wood, K.; Liu, E.J.; Richardson, T.; Clarke, R.; Freer, J.; Aiuppa, A.; Giudice, G.; Bitetto, M.; Mulina, K.; Itikarai, I. BVLOS UAS operations in highly-turbulent volcanic plumes. Front. Robot. AI 2020, 7, 549716. [Google Scholar] [CrossRef] [PubMed]
- Dinc, A.; Elbadawy, I. Global warming potential optimization of a turbofan powered unmanned aerial vehicle during surveillance mission. Transp. Res. D—Transp. Environ. 2020, 85, 102472. [Google Scholar] [CrossRef]
- Jobert, G.; Barritault, P.; Fournier, M.; Boutami, S.; Jobert, D.; Marchant, A.; Michelot, J.; Monsinjon, P.; Lienhard, P.; Nicoletti, S. Miniature particulate matter counter and analyzer based on lens-free imaging of light scattering signatures with a holed image sensor. Sens. Actuators Rep. 2020, 2, 100010. [Google Scholar] [CrossRef]
- Fumian, F.; Chierici, A.; Bianchelli, M.; Martellucci, L.; Rossi, R.; Malizia, A.; Gaudio, P.; D’errico, F.; Di Giovanni, D. Development and performance testing of a miniaturized multi-sensor system combining MOX and PID for potential UAV application in TIC, VOC and CWA dispersion scenarios. Eur. Phys. J. Plus 2021, 136, 913. [Google Scholar] [CrossRef]
- Shaw, J.T.; Shah, A.; Yong, H.; Allen, G. Methods for quantifying methane emissions using unmanned aerial vehicles: A review. Philos. Trans. R. Soc. A 2021, 379, 20200450. [Google Scholar] [CrossRef]
- Khan, A.; Schaefer, D.; Tao, L.; Miller, D.J.; Sun, K.; Zondlo, M.A.; Harrison, W.A.; Roscoe, B.; Lary, D.J. Low power greenhouse gas sensors for unmanned aerial vehicles. Remote Sens. 2012, 4, 1355–1368. [Google Scholar] [CrossRef]
- Golston, L.M.; Aubut, N.F.; Frish, M.B.; Yang, S.; Talbot, R.W.; Gretencord, C.; McSpiritt, J.; Zondlo, M.A. Natural gas fugitive leak detection using an unmanned aerial vehicle: Localization and quantification of emission rate. Atmosphere 2018, 9, 333. [Google Scholar] [CrossRef]
- Olaguer, E.P.; Jeltema, S.; Gauthier, T.; Jermalowicz, D.; Ostaszewski, A.; Batterman, S.; Xia, T.; Raneses, J.; Kovalchick, M.; Miller, S.; et al. Landfill Emissions of Methane Inferred from Unmanned Aerial Vehicle and Mobile Ground Measurements. Atmosphere 2022, 13, 983. [Google Scholar] [CrossRef]
- Barchyn, T.E.; Hugenholtz, C.H.; Myshak, S.; Bauer, J. A UAV-based system for detecting natural gas leaks. J. Unmanned Veh. Syst. 2017, 6, 18–30. [Google Scholar] [CrossRef]
- Yang, S.; Talbot, R.W.; Frish, M.B.; Golston, L.M.; Aubut, N.F.; Zondlo, M.A.; Gretencord, C.; McSpiritt, J. Natural gas fugitive leak detection using an unmanned aerial vehicle: Measurement system description and mass balance approach. Atmosphere 2018, 9, 383. [Google Scholar] [CrossRef]
- Neumann, P.P.; Kohlhoff, H.; Hüllmann, D.; Krentel, D.; Kluge, M.; Dzierliński, M.; Lilienthal, A.J.; Bartholmai, M. Aerial-based gas tomography—From single beams to complex gas distributions. Eur. J. Remote Sens. 2019, 52, 2–16. [Google Scholar] [CrossRef]
- Tittel, F.K.; Bakhirkin, Y.A.; Curl, R.F.; Kosterev, A.A.; McCurdy, M.R.; So, S.G.; Wysocki, G. Laser Based Chemical Sensor Technology: Recent Advances and Applications. In Advanced Environmental Monitoring; Kim, Y.J., Platt, U., Eds.; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar] [CrossRef]
- Martinez, B.; Miller, T.W.; Yalin, A.P. Cavity ring-down methane sensor for small unmanned aerial systems. Sensors 2020, 20, 454. [Google Scholar] [CrossRef]
- Malaver, A.; Motta, N.; Corke, P.; Gonzalez, F. Development and integration of a solar powered unmanned aerial vehicle and a wireless sensor network to monitor greenhouse gases. Sensors 2015, 15, 4072–4096. [Google Scholar] [CrossRef]
- Rossi, M.; Brunelli, D. Autonomous gas detection and mapping with unmanned aerial vehicles. IEEE Trans. Instrum. Meas. 2015, 65, 765–775. [Google Scholar] [CrossRef]
- Alvarado, M.; Gonzalez, F.; Fletcher, A.; Doshi, A. Towards the development of a low cost airborne sensing system to monitor dust particles after blasting at open-pit mine sites. Sensors 2015, 15, 19667–19687. [Google Scholar] [CrossRef]
- Chang, C.C.; Wang, J.L.; Chang, C.Y.; Liang, M.C.; Lin, M.R. Development of a multicopter-carried whole air sampling apparatus and its applications in environmental studies. Chemosphere 2016, 144, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Brady, J.M.; Stokes, M.D.; Bonnardel, J.; Bertram, T.H. Characterization of a quadrotor unmanned aircraft system for aerosol-particle-concentration measurements. Environ. Sci. Technol. 2016, 50, 1376–1383. [Google Scholar] [CrossRef] [PubMed]
- Gu, Q.; Michanowicz, D.R.; Jia, C. Developing a modular unmanned aerial vehicle (UAV) platform for air pollution profiling. Sensors 2018, 18, 4363. [Google Scholar] [CrossRef]
- Xie, M.; Liao, J.; Wang, T.; Zhu, K.; Zhuang, B.; Han, Y.; Li, M.; Li, S. Modelling of the anthropogenic heat flux and its effect on regional meteorology and air quality over the Yangtze River Delta region, China. Atmos. Chem. Phys. 2016, 16, 6071–6089. [Google Scholar] [CrossRef]
- Xie, M.; Zhu, K.; Wang, T.; Feng, W.; Gao, D.; Li, M.; Li, S.; Zhuang, B.; Han, Y.; Chen, P.; et al. Changes in regional meteorology induced by anthropogenic heat and their impacts on air quality in South China. Atmos. Chem. Phys. 2016, 16, 15011–15031. [Google Scholar] [CrossRef]
- Kuklinska, K.; Wolska, L.; Namiesnik, J. Air quality policy in the US and the EU—A review. Atmos. Pollut. Res. 2015, 6, 129–137. [Google Scholar] [CrossRef]
- Greenbaum, D.S. The Clean Air Act: Substantial success and the challenges ahead. Ann. Am. Thorac. Soc. 2018, 15, 296–297. [Google Scholar] [CrossRef]
- Yu, C.; Morotomi, T. The effect of the revision and implementation for environmental protection law on ambient air quality in China. J. Environ. Manag. 2022, 306, 114437. [Google Scholar] [CrossRef] [PubMed]
- Dixit, A.; Jakhar, S.K. Airport capacity management: A review and bibliometric analysis. J. Air Transp. Manag. 2021, 91, 102010. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, L.; Fan, S.; Zhang, Y. Design of Gas Monitoring Terminal Based on Quadrotor UAV. Sensors 2022, 22, 5350. [Google Scholar] [CrossRef]
- Bel Hadj Ali, N.; Abichou, T.; Green, R. Comparing estimates of fugitive landfill methane emissions using inverse plume modeling obtained with Surface Emission Monitoring (SEM), Drone Emission Monitoring (DEM), and Downwind Plume Emission Monitoring (DWPEM). J. Air Waste Manag. Assoc. 2020, 70, 410–424. [Google Scholar] [CrossRef]
- Li, H.Z.; Mundia-Howe, M.; Reeder, M.D.; Pekney, N.J. Gathering pipeline methane emissions in Utica shale using an unmanned aerial vehicle and ground-based mobile sampling. Atmosphere 2020, 11, 716. [Google Scholar] [CrossRef]
- Morales, R.; Ravelid, J.; Vinkovic, K.; Korbeń, P.; Tuzson, B.; Emmenegger, L.; Chen, H.; Schmidt, M.; Humbel, S.; Brunner, D. Controlled-release experiment to investigate uncertainties in UAV-based emission quantification for methane point sources. Atmos. Meas. Tech. 2022, 15, 2177–2198. [Google Scholar] [CrossRef]
- Elpelt-Wessel, I.; Reiser, M.; Morrison, D.; Kranert, M. Emission determination by three remote sensing methods in two release trials. Atmosphere 2022, 13, 53. [Google Scholar] [CrossRef]
- Vinković, K.; Andersen, T.; de Vries, M.; Kers, B.; van Heuven, S.; Peters, W.; Hensen, A.; van den Bulk, P.; Chen, H. Evaluating the use of an Unmanned Aerial Vehicle (UAV)-based active AirCore system to quantify methane emissions from dairy cows. Sci. Total Environ. 2022, 831, 154898. [Google Scholar] [CrossRef]
- Scheller, J.H.; Mastepanov, M.; Christensen, T.R. Toward UAV-based methane emission mapping of Arctic terrestrial ecosystems. Sci. Total Environ. 2022, 819, 153161. [Google Scholar] [CrossRef]
- Stix, J.; de Moor, J.M.; Rüdiger, J.; Alan, A.; Corrales, E.; D’Arcy, F.; Diaz, J.A.; Liotta, M. Using drones and miniaturized instrumentation to study degassing at Turrialba and Masaya volcanoes, Central America. J. Geophys. Res. Solid Earth 2018, 123, 6501–6520. [Google Scholar] [CrossRef]
- Pozzo-Pirotta, L.J.; Montes-Pérez, J.J.; Sammartino, S.; Marcé, R.; Escot, C.; Reyes, I.; Moreno-Ostos, E. Carbon dioxide emission from drawdown areas of a Mediterranean reservoir. Limnetica 2022, 41, 61–72. [Google Scholar] [CrossRef]
- Aurell, J.; Gullett, B.; Holder, A.; Kiros, F.; Mitchell, W.; Watts, A.; Ottmar, R. Wildland fire emission sampling at Fishlake National Forest, Utah using an unmanned aircraft system. Atmos. Environ. 2021, 247, 118193. [Google Scholar] [CrossRef] [PubMed]
- Vernooij, R.; Giongo, M.; Borges, M.A.; Costa, M.M.; Barradas, A.C.S.; Van Der Werf, G.R. Intraseasonal variability of greenhouse gas emission factors from biomass burning in the Brazilian Cerrado. Biogeosciences 2021, 18, 1375–1393. [Google Scholar] [CrossRef]
- Reist, P.C. Aerosol Science and Technology; McGraw Hill: New York, NY, USA, 1993. [Google Scholar]
- Mitloehner, F.M.; Calvo, M.S. Worker health and safety in concentrated animal feeding operations. J. Agric. Saf. Health 2008, 14, 163–187. [Google Scholar] [CrossRef] [PubMed]
R 1 | Title | Authors | PY 2 | Journal | NC 3 |
---|---|---|---|---|---|
1 | Development and Validation of a UAV Based System for Air Pollution Measurements | Villa T.M. et al. [24] | 2016 | Sensors | 110 |
2 | Low Power Greenhouse Gas Sensors for Unmanned Aerial Vehicles | Khan A. et al. [38] | 2012 | Remote Sensing | 110 |
3 | Development and Integration of a Solar Powered Unmanned Aerial Vehicle and a Wireless Sensor Network to Monitor Greenhouse Gases | Malaver A. et al. [46] | 2015 | Sensors | 100 |
4 | Autonomous Gas Detection and Mapping with Unmanned Aerial Vehicles | Rossi and Brunelli [47] | 2015 | IEEE Transactions on Instrumentation and Measurement | 98 |
5 | A study of vertical distribution patterns of PM2.5 concentrations based on ambient monitoring with unmanned aerial vehicles: A case in Hangzhou, China | Peng Z. et al. [25] | 2015 | Atmospheric Environment | 94 |
6 | Towards the Development of a Low Cost Airborne Sensing System to Monitor Dust Particles after Blasting at Open-Pit Mine Sites | Alvarado M. et al. [48] | 2015 | Sensors | 90 |
7 | Development of a multicopter-carried whole air sampling apparatus and its applications in environmental studies | Chang C. et al. [49] | 2016 | Chemosphere | 66 |
8 | Characterization of a Quadrotor Unmanned Aircraft System for Aerosol-Particle-Concentration Measurements | Brady J.M. et al. [50] | 2016 | Environmental Science & Technology | 62 |
9 | Near-Field Characterization of Methane Emission Variability from a Compressor Station Using a Model Aircraft | Nathan B.J. et al. [29] | 2015 | Environmental Science & Technology | 56 |
10 | Developing a Modular Unmanned Aerial Vehicle (UAV) Platform for Air Pollution Profiling | Gu Q. et al. [51] | 2018 | Sensors | 54 |
R | Journal | SJR 1 | CiteScore 2 | JCR 3 | H-i 4 | ISSN 5 | ND 6 | NC 7 |
---|---|---|---|---|---|---|---|---|
1 | Sensors | 0.803 | 6.4 | 3.847 | 196 | 1424-8220 | 22 | 446 |
2 | Atmospheric Environment | 1.383 | 9.2 | 5.755 | 257 | 1352-2310 | 10 | 223 |
3 | Atmosphere | 0.692 | 3.7 | 3.110 | 46 | 2073-4433 | 18 | 186 |
4 | Remote Sensing | 1.283 | 7.4 | 5.349 | 144 | 2072-4292 | 5 | 119 |
5 | Science of The Total Environment | 1.806 | 14.1 | 10.753 | 275 | 0048-9697 | 10 | 84 |
6 | Atmospheric Measurements Techniques | 1.551 | 7.4 | 4.184 | 97 | 1867-8548 | 5 | 29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marin, D.B.; Becciolini, V.; Santana, L.S.; Rossi, G.; Barbari, M. State of the Art and Future Perspectives of Atmospheric Chemical Sensing Using Unmanned Aerial Vehicles: A Bibliometric Analysis. Sensors 2023, 23, 8384. https://doi.org/10.3390/s23208384
Marin DB, Becciolini V, Santana LS, Rossi G, Barbari M. State of the Art and Future Perspectives of Atmospheric Chemical Sensing Using Unmanned Aerial Vehicles: A Bibliometric Analysis. Sensors. 2023; 23(20):8384. https://doi.org/10.3390/s23208384
Chicago/Turabian StyleMarin, Diego Bedin, Valentina Becciolini, Lucas Santos Santana, Giuseppe Rossi, and Matteo Barbari. 2023. "State of the Art and Future Perspectives of Atmospheric Chemical Sensing Using Unmanned Aerial Vehicles: A Bibliometric Analysis" Sensors 23, no. 20: 8384. https://doi.org/10.3390/s23208384
APA StyleMarin, D. B., Becciolini, V., Santana, L. S., Rossi, G., & Barbari, M. (2023). State of the Art and Future Perspectives of Atmospheric Chemical Sensing Using Unmanned Aerial Vehicles: A Bibliometric Analysis. Sensors, 23(20), 8384. https://doi.org/10.3390/s23208384