Differential Evolution Particle Swarm Optimization for Phase-Sensitivity Enhancement of Surface Plasmon Resonance Gas Sensor Based on MXene and Blue Phosphorene/Transition Metal Dichalcogenide Hybrid Structure
Abstract
:1. Introduction
2. Theoretical Modeling and Design Consideration
3. Differential Evolution Particle Swarm Optimization
Algorithm 1: DEPSO |
Initialize: (1) Population N, dimension D, iteration T, Scaling factor F, Leaning factor C, hybrid probability (2) Randomly initialize particle position x_pso, velcolity v, mutation operator w, selection operator u, Pi and Pg of particles (3) Cycle (4) For i = 1:N (5) For j = 1:D (6) %Update the velocity and position of the particle (7) If func() > func() then = (8) End If func() > func() then (9) End % Mutation and Crossover operation (10) (11) (12) Crossover (,) (13) If func() > func() then = (14) else = (15) End % Update globe values (16) If max(func()) > max(func()) then (17) [fmax,r] = max(func()); bestx = (r,:);() (18) else [fmax,r] = max(func()); bestx = (r,:); (19) End (20) End (21) End |
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Homola, J.; Yee, S.S.; Gauglitz, G. Surface plasmon resonance sensors: Review. Sens. Actuators B Chem. 1999, 54, 3–15. [Google Scholar] [CrossRef]
- Piliarik, M.; Homola, J. Surface plasmon resonance (SPR) sensors: Approaching their limits? Opt. Express 2009, 17, 16505–16517. [Google Scholar] [CrossRef] [PubMed]
- Hossain, B.; Paul, A.K.; Islam, M.A.; Rahman, M.M. A highly sensitive surface plasmon resonance biosensor using SnSe allotrope and heterostructure of BlueP/MoS2 for cancerous cell detection. Optik 2022, 252, 168506. [Google Scholar] [CrossRef]
- Chen, Z.; Cai, P.; Wen, Q.; Chen, H.; Tang, Y.; Yi, Z.; Wei, K.; Li, G.; Tang, B.; Yi, Y. Graphene multi-frequency broadband and ultra-broadband terahertz absorber based on surface plasmon resonance. Electronics 2023, 12, 2655. [Google Scholar] [CrossRef]
- Lai, R.; Shi, P.; Yi, Z.; Li, H.; Yi, Y. Triple-band surface plasmon resonance metamaterial absorber based on open-ended prohibited sign type monolayer graphene. Micromachines 2023, 14, 953. [Google Scholar] [CrossRef]
- Tang, B.; Yang, N.; Huang, L.; Su, J.; Jiang, C. Tunable anisotropic perfect enhancement absorption in black phosphorus-based metasurfaces. IEEE Photonics J. 2020, 12, 4500209. [Google Scholar] [CrossRef]
- Jia, Z.; Huang, L.; Su, J.; Tang, B. Tunable electromagnetically induced transparency-like in graphene metasurfaces and its application as a refractive index sensor. J. Lightwave Technol. 2020, 39, 1544–1549. [Google Scholar] [CrossRef]
- Prado, A.R.; Diaz, C.A.R.; Lyra, L.G.; Oliveira, J.P. Surface plasmon resonance-based optical fiber sensors for H2S in situ detection. Plasmonics 2021, 16, 787–797. [Google Scholar] [CrossRef]
- Guner, H.; Ozgur, E.; Kokturk, G.; Celik, M.; Esen, E.; Topal, A.E.; Ayas, S.; Uludag, Y.; Elbuken, C.; Dana, A. A smart phone-based surface plasmon resonance imaging (SPRi) platform for on-site biodetection. Sens. Actuator B Chem. 2017, 239, 571–577. [Google Scholar] [CrossRef]
- Mudgal, N.; Saharia, A.; Choure, K.K.; Agarwal, A.; Singh, G. Sensitivity enhancement with anti-reflection coating of siliconnitride (Si3N4) layer in silver-based surface plasmon resonance (SPR) sensor for sensing of DNA hybridization. Appl. Phys. A Mater. Sci. Process. 2020, 126, 94612. [Google Scholar] [CrossRef]
- Li, C.; Wu, P.M.; Hartings, J.A.; Wu, Z.; Narayan, R.K. Surface plasmon resonance-based fiber optic sensor utilizing metal nanoparticles: Influence of ambient temperature. Biomed. Microdevices 2012, 14, 759–768. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Liu, L.; He, Y.; Ji, Y.; Guo, J.; Ma, H. Temperature-regulated surface plasmon resonance imaging system for bioaffinity sensing. Plasmonics 2016, 11, 771–779. [Google Scholar] [CrossRef]
- Rossi, S.; Gazzola, E.; Capaldo, P.; Borile, G.; Romanato, F. Grating-Coupled Surface Plasmon Resonance (GC-SPR) Optimization for Phase-Interrogation Biosensing in a Microfluidic Chamber. Sensors 2018, 18, 1621. [Google Scholar] [CrossRef] [PubMed]
- Aref, S.H. SPR phase sensitivity enhancement in common-path polarization heterodyne interferometer by polarization tuning. Optik 2018, 156, 619–627. [Google Scholar] [CrossRef]
- Wang, R.; Du, L.P.; Zhang, C.L. Plasmonic petal-shaped beam for microscopic phase-sensitive SPR biosensor with ultrahigh sensitivity. Opt. Lett. 2013, 38, 4770–4773. [Google Scholar] [CrossRef] [PubMed]
- Yue, C.; Qin, Z.R.; Lang, Y.P.; Liu, Q.G. Determination of thin metal film’s thickness and optical constants based on SPR phase detection by simulated annealing particle swarm optimization. Opt. Commun. 2019, 430, 238–245. [Google Scholar] [CrossRef]
- Dejpasand, M.T.; Saievar-Iranizad, E.; Bayat, A. Photoluminescence enhancement of single-layer graphene quantum dots by the surface plasmon resonance of Au nanocubes. J. Lumin. 2021, 236, 118070. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Chen, Q. Surface plasmon resonance effect, nonlinearity and faraday rotation properties of magneto optical glass: Influence of diamagnetic Ag@ZrO2 nanoparticles. J. Non-Cryst. Solids 2020, 553, 120498. [Google Scholar] [CrossRef]
- Singh, M.K.; Pal, S.; Verma, A.; Prajapati, Y.K.; Saini, J.P. Highly sensitive antimonene-coated black phosphorous-based surface plasmon-resonance biosensor for DNA hybridization: Design and numerical analysis. J. Nanophotonics 2020, 14, 046015. [Google Scholar] [CrossRef]
- Fang, Y.; Cheng, Z.; Wang, S.; Hao, H.; Zhu, R. Effects of oxidation on the localized surface plasmon resonance of Cu nanoparticles fabricated via vacuum coating. Vacuum 2021, 184, 109965. [Google Scholar] [CrossRef]
- Hoa, X.D.; Kirk, A.G.; Tabrizian, M. Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress. Biosens. Bioelectron. 2007, 23, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Vincenzo, A.; Roberto, P.; Marco, F. Surface plasmon resonance in gold nanoparticles: A review. J. Phys. Condens. Matter. 2017, 29, 203002. [Google Scholar]
- Zhu, Z.; Tomanek, D. Semiconducting layered blue phosphorus: A computational study. Phys. Rev. Lett. 2014, 112, 176802. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; Zhu, Z.; Tomanek, D. Phase coexistence and metal-insulator transition in few-layer phosphorene: A computational study. Phys. Rev. Lett. 2014, 113, 046804. [Google Scholar] [CrossRef] [PubMed]
- Idrees, M.; Nguyen, C.V.; Bui, H.D.; Amin, B. Electronic and optoelectronic properties of van der Waals heterostructure based on graphene-like Gan, blue phosphorene, SiC, and ZnO: A first principles study. J. Appl. Phys. 2020, 127, 245302. [Google Scholar] [CrossRef]
- Peng, Q.; Wang, Z.; Sa, B.; Wu, B.; Sun, Z. Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures. Sci. Rep. 2016, 6, 31994. [Google Scholar] [CrossRef]
- Sharma, A.K.; Pandey, A.K. Blue phosphorene/MoS2 heterostructure based SPR sensor with enhanced sensitivity. IEEE Photonics Technol. Lett. 2018, 30, 595–598. [Google Scholar] [CrossRef]
- Prajapati, Y.K.; Srivastava, A. Effect of BlueP/MoS2 heterostructure and graphene layer on the performance parameter of SPR sensor: Theoretical insight. Superlattices Microstruct. 2019, 129, 152–162. [Google Scholar] [CrossRef]
- Yue, C.; Lang, Y.; Zhou, X.; Liu, Q. Sensitivity enhancement of an SPR biosensor with a graphene and blue phosphorene/transition metal dichalcogenides hybrid nanostructure. Appl. Opt. 2019, 58, 9411. [Google Scholar] [CrossRef]
- Liao, J.F.; Han, L.; Xu, C.Y. Comparison of the sensitivity by SPR in a metal-ITO-BlueP/TMDC structure. Appl. Opt. 2021, 60, 5161. [Google Scholar] [CrossRef]
- Li, K.; Li, L.; Xu, N.; Peng, X.; Zhou, Y. Ultrasensitive Surface Plasmon Resonance Biosensor Using Blue Phosphorus–Graphene Architecture. Sensors 2020, 20, 3326. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, S.; Liang, W.; Luo, S.; Zhang, H. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photonics Rev. 2018, 12, 1700229. [Google Scholar] [CrossRef]
- Jiang, Q.; Wu, C.; Wang, Z.; Wang, A.C.; He, J.H. MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit. Nano Energy 2018, 46, 266–272. [Google Scholar] [CrossRef]
- Li, S.S.; Cui, X.H.; Li, X.H.; Yan, H.T.; Zhang, R.Z. Effect of coexistence of vacancy and strain on the electronic properties of NH3 adsorption on the Hf2CO2 MXene from first-principles calculations. Vacuum 2022, 196, 110774. [Google Scholar] [CrossRef]
- Nslund, L.K.; Mikkel, M.H.; Kokkonen, E.; Magnuson, M. Chemical bonding of termination species in 2D carbides investigated through valence band UPS/XPS of Ti3C2Tx MXene. 2D Mater. 2021, 8, 045026. [Google Scholar] [CrossRef]
- Sun, Y.; Cai, H.; Wang, X.; Zhan, S. Optimization methodology for structural multiparameter surface plasmon resonance sensors in different modulation modes based on particle swarm optimization. Opt. Commun. 2018, 431, 142–150. [Google Scholar] [CrossRef]
- Amoosoltani, N.; Zarifkar, A.; Farmani, A. Particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithms for a surface plasmon resonance-based gas sensor. J. Comput. Electron. 2019, 18, 1354–1364. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, X.; Qin, C.; Xing, X.; Chen, Z. Improved particle swarm optimization based selective harmonic elimination and neutral point balance control for three-level inverter in low-voltage ride-through operation. IEEE Trans. Ind. Inform. 2022, 18, 642–652. [Google Scholar] [CrossRef]
- Zheng, B.; Huang, H.Z.; Guo, W.; Li, Y.F. Fault diagnosis method based on supervised particle swarm optimization classification algorithm. Intell. Data Anal. 2018, 22, 191–210. [Google Scholar] [CrossRef]
- Han, L.; Xu, W.; Liu, T.; Xu, C. Improved differential evolution algorithm for sensitivity enhancement of surface plasmon resonance biosensor based on two-dimensional material for detection of waterborne bacteria. Biosensor 2023, 13, 600. [Google Scholar] [CrossRef]
- Gan, X.; Zhao, H.; Quan, X. Two-dimensional mos2: A promising building block for biosensors. Biosens. Bioelectron. 2017, 89, 56–71. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Guo, Z. Synthesis and stabilization of black phosphorus and phosphorene: Recent progress and perspectives. iScience 2021, 24, 103116. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.Y.; Lee, Y.; Koh, H.J.; Jung, H.; Kim, J.S. Superior chemical sensing performance of black phosphorus: Comparison with MoS2 and graphene. Adv. Mater. 2016, 28, 7020–7028. [Google Scholar] [CrossRef] [PubMed]
2D Materials | Thickness (nm) | Refractive Index |
---|---|---|
BlueP/MoS2 | 0.75 | 2.81 + 0.32i |
BlueP/MoSe2 | 0.78 | 2.77 + 0.35i |
BlueP/WS2 | 0.75 | 2.48 + 0.17i |
BlueP/WSe2 | 0.78 | 2.69 + 0.22i |
MXene | 0.99 | 2.38 + 1.33i |
Parameters | Algorithm | |
---|---|---|
PSO | DEPSO | |
Particle number | 100 | 100 |
Maximum iterative times | 100 | 100 |
Acceleration constants c1/c2 | 2/2 | / |
Inertia weight coefficient range | [0.6, 0.9] | [0.6, 0.9] |
Scale factor F0 | / | 0.1 |
Crossover probability CR | / | [0.2, 0.9] |
Type of BlueP/TMDCs | First Layer Ag (nm) | Third Layer Ag (nm) | BlueP/TMDCs Layer (N) | Mxene Layer (L) | Minimum Reflectivity | Incident Angle (deg) | Phase Sensitivity (deg/RIU) | Iterations (Times) |
---|---|---|---|---|---|---|---|---|
BlueP/MoS2 | 19.064 | 22.244 | 2 | 1 | 2.360 × 10−4 | 43.09 | 1.824 × 106 | 58 |
BlueP/MoSe2 | 16.310 | 25.367 | 1 | 1 | 5.289 × 10−5 | 43.06 | 1.808 × 106 | 67 |
BlueP/WS2 | 17.806 | 23.932 | 1 | 1 | 1.271 × 10−4 | 43.06 | 1.821 × 106 | 60 |
BlueP/WSe2 | 21.502 | 20.142 | 1 | 1 | 1.395 × 10−4 | 43.07 | 1.816 × 106 | 93 |
Type of BlueP/TMDCs | First Layer Ag (nm) | Third Layer Ag (nm) | BlueP/TMDCs Layer (N) | Mxene Layer (L) | Minimum Reflectivity | Incident Angle (deg) | Phase Sensitivity (deg/RIU) | Iterations (Times) |
---|---|---|---|---|---|---|---|---|
BlueP/MoS2 | 18.401 | 22.609 | 3 | 1 | 1.824 × 10−4 | 43.11 | 1.833 × 106 | 13 |
BlueP/MoSe2 | 17.668 | 22.948 | 4 | 1 | 3.597 × 10−5 | 43.13 | 1.811 × 106 | 21 |
BlueP/WS2 | 18.513 | 22.712 | 3 | 1 | 1.271 × 10−4 | 43.10 | 1.866 × 106 | 32 |
BlueP/WSe2 | 17.226 | 24.236 | 2 | 1 | 1.283 × 10−4 | 43.08 | 1.821 × 106 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, C.; Ding, Y.; Tao, L.; Zhou, S.; Guo, Y. Differential Evolution Particle Swarm Optimization for Phase-Sensitivity Enhancement of Surface Plasmon Resonance Gas Sensor Based on MXene and Blue Phosphorene/Transition Metal Dichalcogenide Hybrid Structure. Sensors 2023, 23, 8401. https://doi.org/10.3390/s23208401
Yue C, Ding Y, Tao L, Zhou S, Guo Y. Differential Evolution Particle Swarm Optimization for Phase-Sensitivity Enhancement of Surface Plasmon Resonance Gas Sensor Based on MXene and Blue Phosphorene/Transition Metal Dichalcogenide Hybrid Structure. Sensors. 2023; 23(20):8401. https://doi.org/10.3390/s23208401
Chicago/Turabian StyleYue, Chong, Yueqing Ding, Lei Tao, Sen Zhou, and Yongcai Guo. 2023. "Differential Evolution Particle Swarm Optimization for Phase-Sensitivity Enhancement of Surface Plasmon Resonance Gas Sensor Based on MXene and Blue Phosphorene/Transition Metal Dichalcogenide Hybrid Structure" Sensors 23, no. 20: 8401. https://doi.org/10.3390/s23208401
APA StyleYue, C., Ding, Y., Tao, L., Zhou, S., & Guo, Y. (2023). Differential Evolution Particle Swarm Optimization for Phase-Sensitivity Enhancement of Surface Plasmon Resonance Gas Sensor Based on MXene and Blue Phosphorene/Transition Metal Dichalcogenide Hybrid Structure. Sensors, 23(20), 8401. https://doi.org/10.3390/s23208401