Dynamic Response Study of Piezoresistive Ti3C2-MXene Sensor for Structural Impacts
Abstract
:1. Introduction
2. Materials and Methods
2.1. -MXene Preparation
2.2. Impact Sensor Fabrication
2.3. Experimental Structural Impact Setup
2.4. Brief Experimental Theory
- Dynamics of the ball on the rails: No-slip and no-bounce conditions of the ball along with negligible rolling resistance when the ball rolls down the ramp.
- Ball-Plate interaction: Collision between the ball and the cantilever plate is assumed to be an elastic collision neglecting all thermal effects due to the collision.
- Projectile motion of the ball: The trajectory of the ball in the space between the rail and the plate follows a parabolic path in the x-y plane (shown in Figure 2). (Assuming the absence of air resistance.)
- Linear mechanics assumptions: The impact is assumed to generate a small strain and small deformation response of the plate structure.
- Dynamics of the plate: Upon impact from the ball, the plate is assumed to have only transverse vibration in the x-y plane—resulting in a cantilever-type response of the vertical plate.
3. Results and Discussions
3.1. X-ray Diffraction
3.2. Response and Comparison of Sensors
3.2.1. Sensitivity
3.2.2. Response Time
3.3. Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Worden, K.; Farrar, C.R.; Manson, G.; Park, G. The fundamental axioms of structural health monitoring. Proc. R. Soc. Math. Phys. Eng. Sci. 2007, 463, 1639–1664. [Google Scholar] [CrossRef]
- Zukas, J.; Nicholas, T.; Swift, H.; Greszczuk, L.; Curran, D. Impact Dynamics; Wiley: Hoboken, NJ, USA, 1982. [Google Scholar]
- Joshi, S.; Hegde, G.; Nayak, M.; Rajanna, K. A novel piezoelectric thin film impact sensor: Application in non-destructive material discrimination. Sens. Actuators A Phys. 2013, 199, 272–282. [Google Scholar] [CrossRef]
- Loh, K.J.; Kim, J.; Lynch, J.P.; Kam, N.W.S.; Kotov, N.A. Multifunctional layer-by-layer carbon nanotube–polyelectrolyte thin films for strain and corrosion sensing. Smart Mater. Struct. 2007, 16, 429–438. [Google Scholar] [CrossRef]
- Akinwande, D.; Brennan, C.J.; Bunch, J.S.; Egberts, P.; Felts, J.R.; Gao, H.; Huang, R.; Kim, J.S.; Li, T.; Li, Y.; et al. A review on mechanics and mechanical properties of 2D materials—Graphene and beyond. Extrem. Mech. Lett. 2017, 13, 42–77. [Google Scholar] [CrossRef]
- Grabowski, K.; Srivatsa, S.; Vashisth, A.; Mishnaevsky, L.; Uhl, T. Recent advances in MXene-based sensors for Structural Health Monitoring applications: A review. Measurement 2022, 189, 110575. [Google Scholar] [CrossRef]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef] [PubMed]
- Kedambaimoole, V.; Garwal, K.H.; Konandur, R.; Sen, P.; Nayak, M.M.; Kumar, S. MXene Wearables: Properties, Fabrication Strategies, Sensing Mechanism and Applications. Mater. Adv. 2022, 3, 3784–3808. [Google Scholar] [CrossRef]
- Sinha, A.; Dhanjai; Zhao, H.; Huang, Y.; Lu, X.; Chen, J.; Jain, R. MXene: An emerging material for sensing and biosensing. TrAC-Trends Anal. Chem. 2018, 105, 424–435. [Google Scholar] [CrossRef]
- Srivatsa, S.; Belthangadi, P.; Ekambaram, S.; Pai, M.; Sen, P.; Uhl, T.; Kumar, S.; Grabowski, K.; Nayak, M.M. Dynamic response study of Ti3C2-MXene films to shockwave and impact forces. RSC Adv. 2020, 10, 29147–29155. [Google Scholar] [CrossRef] [PubMed]
- Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644. [Google Scholar] [CrossRef]
- Shekhirev, M.; Shuck, C.E.; Sarycheva, A.; Gogotsi, Y. Characterization of MXenes at every step, from their precursors to single flakes and assembled films. Prog. Mater. Sci. 2020, 120, 100757. [Google Scholar] [CrossRef]
- Bauchau, O.A.; Craig, J.I. Structural Analysis with Application to Aerospace Structures, 1st ed.; Part of the Book Series: Solid Mechanics and Its Applications; Springer: Dordrecht, The Netherlands, 2009; Volumn 163, p. 943. [Google Scholar] [CrossRef]
- Cohen, M. Classical Mechanics: A Critical Introduction, 2011 ed.; University of Pennsylvania, Department of Physics and Astronomy: Philadelphia, PA, USA, 2011. [Google Scholar]
- Srivatsa, S.; Paćko, P.; Mishnaevsky, L.; Uhl, T.; Grabowski, K. Deformation of Bioinspired MXene-Based Polymer Composites with Brick and Mortar Structures: A Computational Analysis. Materials 2020, 13, 5189. [Google Scholar] [CrossRef] [PubMed]
- PCB PIEZOTRONICS Commercial Sensor: Micro ICP® Pressure Sensor 132A Series. Available online: https://www.pcb.com/contentstore/docs/PCB_Corporate/Pressure/Products/Manuals/132A31_004AW.pdf (accessed on 14 August 2023).
- Ma, Y.; Liu, N.; Li, L.; Hu, X.; Zou, Z.; Wang, J.; Luo, S.; Gao, Y. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat. Commun. 2017, 8, 1207. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Liu, N.; Liu, W.; Li, M.; Ma, Y.; Luo, C.; Wang, S.; Rao, J.; Hu, X.; Su, J.; et al. 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor. Nano Energy 2018, 50, 79–87. [Google Scholar] [CrossRef]
- Kedambaimoole, V.; Kumar, N.; Shirhatti, V.; Nuthalapati, S.; Sen, P.; Nayak, M.M.; Rajanna, K.; Kumar, S. Laser-Induced Direct Patterning of Free-standing Ti3C2-MXene Films for Skin Conformal Tattoo Sensors. ACS Sens. 2020, 5, 2086–2095. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Shi, L.; Cao, Z.; Wang, R.; Sun, J. Strain Sensors with a High Sensitivity and a Wide Sensing Range Based on a Ti3C2Tx (MXene) Nanoparticle–Nanosheet Hybrid Network. Adv. Funct. Mater. 2019, 29, 1807882. [Google Scholar] [CrossRef]
- Qin, R.; Hu, M.; Li, X.; Yan, L.; Wu, C.; Liu, J.; Gao, H.; Shan, G.; Huang, W. A highly sensitive piezoresistive sensor based on MXenes and polyvinyl butyral with a wide detection limit and low power consumption. Nanoscale 2020, 12, 17715–17724. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Qu, X.; Zhao, W.; Ren, Y.; Si, W.; Wang, W.; Wang, Q.; Huang, W.; Dong, X. Highly Stretchable, Elastic, and Sensitive MXene-Based Hydrogel for Flexible Strain and Pressure Sensors. Research 2020, 2020, 1–13. [Google Scholar] [CrossRef] [PubMed]
- NXP Semiconductor: Integrated Silicon Pressure Sensor MPX5700 Series. Available online: https://www.nxp.com/docs/en/data-sheet/MPX5700.pdf (accessed on 14 August 2023).
Ball ID | Mass (kg) | Radius (m) | (s) | F (N) | MXene PV (V) | PZT PV (V) | MXene RT (s) | PZT RT (s) |
---|---|---|---|---|---|---|---|---|
1 | ||||||||
2 | ||||||||
3 | ||||||||
4 | ||||||||
5 | ||||||||
6 |
Material | Experiment Type | Response Time |
---|---|---|
Pure TiC-MXene film | Inclined ball impact (Piezoresistive) | 1.28 ± 0.24 s (This work) |
PZT (Commercial sensor) | Inclined ball impact (Piezoelectric) | 31.19 ± 24.61 s (This work) |
Pure TiC-MXene film [10] | Shock tube test (Piezoresistive) | 7.13 ± 1.28 s |
Pure TiC-MXene film [10] | Ball drop test (Piezoresistive) | 1.56 ± 0.03 ms |
Pure TiC-MXene film [17] | Compression test (Piezoresistive) | 30 ms |
TiC-MXene/Sponge network [18] | Compression test (Piezoresistive) | 130 ms |
Pure TiC-MXene [19] | Tensile test (Piezoresistive) | 88 ms |
TiC-MXene nanoparticle-nanosheet hybrid [20] | Tensile test (Piezoresistive) | 130 ms |
TiC-MXene/Polyvinyl butyral [21] | Pressure test (Piezoresistive) | 110 ms |
TiC-MXene/PVA/Polyvinyl pyrrolidone [22] | Tensile test (Piezoresistive) | 33.5 ms |
Ceramic [16] (Commercial sensor) | Shock tube test (Piezoelectric) | ≤3 s |
Silicon [23] (Commercial sensor) | Shock tube test (Piezoresistive) | 1 ms |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivatsa, S.; Sieber, P.; Hofer, C.; Robert, A.; Raorane, S.; Marciszko-Wiąckowska, M.; Grabowski, K.; Nayak, M.M.; Chatzi, E.; Uhl, T. Dynamic Response Study of Piezoresistive Ti3C2-MXene Sensor for Structural Impacts. Sensors 2023, 23, 8463. https://doi.org/10.3390/s23208463
Srivatsa S, Sieber P, Hofer C, Robert A, Raorane S, Marciszko-Wiąckowska M, Grabowski K, Nayak MM, Chatzi E, Uhl T. Dynamic Response Study of Piezoresistive Ti3C2-MXene Sensor for Structural Impacts. Sensors. 2023; 23(20):8463. https://doi.org/10.3390/s23208463
Chicago/Turabian StyleSrivatsa, Shreyas, Paul Sieber, Céline Hofer, André Robert, Siddhesh Raorane, Marianna Marciszko-Wiąckowska, Krzysztof Grabowski, M. M. Nayak, Eleni Chatzi, and Tadeusz Uhl. 2023. "Dynamic Response Study of Piezoresistive Ti3C2-MXene Sensor for Structural Impacts" Sensors 23, no. 20: 8463. https://doi.org/10.3390/s23208463
APA StyleSrivatsa, S., Sieber, P., Hofer, C., Robert, A., Raorane, S., Marciszko-Wiąckowska, M., Grabowski, K., Nayak, M. M., Chatzi, E., & Uhl, T. (2023). Dynamic Response Study of Piezoresistive Ti3C2-MXene Sensor for Structural Impacts. Sensors, 23(20), 8463. https://doi.org/10.3390/s23208463