Two-Stage Feature Generator for Handwritten Digit Classification
Abstract
:1. Introduction
2. State of the Art
3. Proposed Framework
3.1. Soft Sensor Implementation for the Feature Generation
3.2. One-Stage Feature Generator
Algorithm 1: Obtaining principal component (PC)-based features |
is the number of examples in data matrix.
|
3.3. Two-Stage Feature Generator
Algorithm 2: Obtaining neural network-based features from projected data on the PCs |
|
Algorithm 3: Calculating the distances among the feature vectors within a digit class |
is the number of the examples in a given class.
|
4. Verification of Inter and Intra Class Distributions
Algorithm 4: Calculating the distances between the two-digit classes |
is the number of the examples in a given class.
|
- Case 1: if the distance remains constant and the standard deviations in Equation (5) have small values, then SM becomes higher. Note that a higher SM indicates better separation.
- Case 2: if the standard deviations in Equation (5) are constant and the distance has high values, then SM becomes higher.
5. Results and Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Mellouli, D.; Hamdani, T.M.; Sanchez-Medina, J.J.; Ayed, M.B.; Alimi, A.M. Morphological Convolutional Neural Network Architecture for Digit Recognition. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 2876–2885. [Google Scholar] [CrossRef] [PubMed]
- Bourland, H.; Kamp, Y. Auto-Association by Multilayer Perceptions and Singular Value Decomposition. Biol. Cybern. 1988, 59, 291–294. [Google Scholar] [CrossRef] [PubMed]
- Lowe, D.; Webb, A.R. Optimized Feature Extraction and the Bayes Decision and Feed-Forward Classifier. IEEE Trans. Paterrn Anal. Mach. Intell. 1991, 13, 355–364. [Google Scholar] [CrossRef]
- Chatterjee, C.; Roychowdhury, V. On Self-Organizing Algorithms and Networks for Class-Separability Features. IEEE Tran. Neural Netw. 1997, 8, 663–678. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Jain, A.K. Artificial Neural Networks for Feature Extraction and Multivariate Data Projection. IEEE Tran. Neural Netw. 1995, 6, 296–317. [Google Scholar]
- Lee, C.; Landgrebe, D.A. Decision Boundary Feature Extraction for Neural Networks. IEEE Tran. Neural Netw. 1997, 8, 75–83. [Google Scholar]
- Theodoridis, S.; Koutroumbas, K. Pattern Recognition; Academic Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Jarrett, K.; Kavukcuoglu, K.; Ranzato, M.A.; LeCun, Y. What is the best multi-stage architecture for object recognition. In Proceedings of the IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009; pp. 2146–2153. [Google Scholar]
- Bruna, J.; Mallat, S. Invariant scattering convolution networks. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1872–1886. [Google Scholar] [CrossRef]
- Patel, D.K.; Som, T.; Yadav, S.K.; Singh, M.K. Handwritten character recognition using multiresolution technique and Euclidean distance metric. J. Signal Inf. Process. 2012, 3, 208–214. [Google Scholar]
- Ayyaz, M.N.; Javed, I.; Mahmood, W. Handwritten character recognition using multiclass SVM classification with hybrid feature extraction. Pak. J. Eng. Appl. Sci. 2012, 10, 57–67. [Google Scholar]
- Shubhangi, D.C.; Hiremath, P.S. Handwritten English character and digit recognition using multiclass SVM classifier and using structural micro features. Int. J. Recent Trends Eng. 2009, 2, 193. [Google Scholar]
- Liu, C.L.; Nakagawa, M. Handwritten numeral recognition using neural networks: Improving the accuracy by discriminative training. In Proceedings of the Fifth International Conference on Document Analysis and Recognition, Bangalore, India, 20–22 September 1999; pp. 257–260. [Google Scholar]
- Suen, C.Y.; Liu, K.; Strathy, N.W. Sorting and recognizing cheques and financial documents. In Document Analysis Systems: Theory and Practice; Springer: Berlin/Heidelberg, Germany, 1999; pp. 173–187. [Google Scholar]
- Lee, D.S.; Srihari, S.N. Handprinted digit recognition: A comparison of algorithms. In Proceedings of the Third International Workshop on Frontiers of Handwriting Recognition, Buffalo, NY, USA, 25–27 May 1993; pp. 153–164. [Google Scholar]
- Filatov, A.; Nikitin, N.; Volgunin, A.; Zelinsky, P. The Address Script TM recognition system for handwritten envelopes. In Document Analysis Systems: Theory and Practice; Springer: Berlin/Heidelberg, Germany, 1999; pp. 157–171. [Google Scholar]
- Pan, S.; Wang, Y.; Liu, C.; Ding, X. A discriminative cascade CNN model for offline handwritten digit recognition. In Proceedings of the 14th IAPR International Conference on Machine Vision Applications (MVA), Tokyo, Japan, 18–22 May 2015; pp. 501–504. [Google Scholar]
- Ganapathy, V.; Liew, K.L. Handwritten character recognition using Multi scale neural network training technique. World Acad. Sci. Eng. Technol. 2008, 39, 32–37. [Google Scholar]
- Singh, V.; Lal, S. Digit recognition using single layer neural network with PCA. In Proceedings of the Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE), Nadi, Fiji, 4–5 November 2014; pp. 1–7. [Google Scholar]
- Soman, S.T.; Nandigam, A.; Chakravarthy, V.S. An efficient multi classifier system based on convolutional neural network for offline handwritten Telugu character recognition. In Proceedings of the National Conference Communications (NCC, 1–5), Delhi, India, 15–17 February 2013. [Google Scholar]
- Chan, T.H.; Jia, K.; Gao, S.; Lu, J.; Zeng, Z.; Ma, Y. PCANet: A simple deep learning baseline for image classification. IEEE Trans. Image Process. 2015, 24, 5017–5032. [Google Scholar] [CrossRef] [PubMed]
- Ciresan, D.; Meier, U.; Schmidhuber, J. Multi-column deep neural networks for image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3642–3649. [Google Scholar]
- Goodfellow, I.J.; Farley, D.W.; Mirza, M.; Courville, A.; Bengio, Y. Maxout networks. In Proceedings of the 30th ICML, Atlanta, GA, USA, 16–21 June 2013; pp. 1–9. [Google Scholar]
- Zeiler, M.D.; Fergus, R. Stochastic pooling for regularization of deep convolutional neural networks. In Proceedings of the ICLR, Scottsdale, AZ, USA, 2–4 May 2013. [Google Scholar]
- Deng, L.; Yu, D. Deep convex network: A scalable architecture for speech pattern classification. In Proceedings of the International Speech Communication Association, Florence, Italy, 27–31 August 2011; pp. 2285–2288. [Google Scholar]
- Yu, K.; Lin, Y.; Lafferty, J. Learning image representations from the pixel level via hierarchical sparse coding. In Proceedings of the IEEE Conference CVPR, Colorado Springs, CO, USA, 20–25 June 2011; pp. 1713–1720. [Google Scholar]
- Keysers, D.; Deselaers, T.; Gollan, C.; Ney, H. Deformation models for image recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 1422–1435. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Grosse, R.; Rananth, R.; Ng, A.Y. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In Proceedings of the 26th Annual ICML, Montreal, QC, Canada, 14–18 June 2009; pp. 609–616. [Google Scholar]
- Hotta, S.; Kiyasu, S.; Miyahara, S. Pattern recognition using average patterns of categorical k-nearest neighbors. In Proceedings of the 17th International Conference on Pattern Recognition (ICPR), Cambridge, UK, 26 August 2004; pp. 412–415. [Google Scholar]
- Mairal, J.; Bach, F.; Ponce, J.; Sapiro, G.; Zisserman, A. Supervised dictionary learning. In Proceedings of the Advances in Neural Information Processing Systems NIPS, Vancouver, BC, Canada, 8–11 December 2008. [Google Scholar]
- Zhang, H.; Berg, A.C.; Maire, M.; Malik, J. SVM-KNN: Discriminative nearest neighbor classification for visual category recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 17–22 June 2006; pp. 2126–2136. [Google Scholar]
- Su, T.H.; Liu, C.L.; Zhang, X.Y. Perceptron Learning of Modified Quadratic Discriminant Function. In Proceedings of the International Conference on Document Analysis and Recognition, Beijing, China, 18–21 September 2011; pp. 1007–1011. [Google Scholar]
- Xu, J.; An, W.; Zhang, L.; Zhang, D. Sparse, collaborative, or nonnegative representation: Which helps pattern classification. Pattern Recognit. 2019, 88, 679–688. [Google Scholar] [CrossRef]
- Prasad, B.K.; Sanyal, G. Novel features and a cascaded classifier based Arabic numerals recognition system. Multidimens. Syst. Signal Process. 2018, 29, 321–338. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Yang, Z.; Yuan, B.; Liu, X. Air-GR: An Over-the-Air Handwritten Character Recognition System Based on Coordinate Correction YOLOv5 Algorithm and LGR-CNN. Sensors 2023, 23, 1464. [Google Scholar] [CrossRef]
- Chen, M.; Lin, J.; Zou, Y.; Wu, K. Acoustic Sensing Based on Online Handwritten Signature Verification. Sensors 2022, 22, 9343. [Google Scholar] [CrossRef]
- Campos, C.; Sandak, J.; Kljun, M.; Čopič Pucihar, K. The Hybrid Stylus: A Multi-Surface Active Stylus for Interacting with and Handwriting on Paper, Tabletop Display or Both. Sensors 2022, 22, 7058. [Google Scholar] [CrossRef]
- Alemayoh, T.T.; Shintani, M.; Lee, J.H.; Okamoto, S. Deep-Learning-Based Character Recognition from Handwriting Motion Data Captured Using IMU and Force Sensors. Sensors 2022, 22, 7840. [Google Scholar] [CrossRef] [PubMed]
- Pirim, M.A.G. Neural Network Based Feature Extraction for Handwritten Digit Recognition. Ph.D. Thesis, Atilim University, Ankara, Turkey, 2017. [Google Scholar]
- Hou, Y.; Zhao, H. Handwritten Digit Recognition Based on Depth Neural Network. In Proceedings of the International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Okinawa, Japan, 24–26 November 2017; pp. 35–38. [Google Scholar]
- Bettilyon, T.E. How to Classify MNIST Digits with Different Neural Network Architectures. 2018. Available online: https://medium.com/tebs-lab/how-to-classify-mnist-digits-with-different-neural-network-architectures-39c75a0f03e3 (accessed on 25 May 2022).
- Hull, J.J. A database for Handwritten Text Recognition Research. IEEE Trans. Pattern Anal. Mach. Intell. 1994, 16, 550–554. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Tax, D.M.J.; Laskov, P. Online SVM learning from classification to data description and back. In Proceedings of the IEEE 13th Workshop on Neural Networks for Signal Processing (IEEE Cat. No. 03TH8718), Toulouse, France, 17–19 September 2003. [Google Scholar]
Stage/Cluster | Digit 0 | Digit 1 | Digit 2 | Digit 3 | Digit 4 | Digit 5 | Digit 6 | Digit 7 | Digit 8 | Digit 9 |
---|---|---|---|---|---|---|---|---|---|---|
One stage | 0.7507 | 0.5342 | 0.6096 | 0.6058 | 0.8084 | 0.7281 | 0.7214 | 0.8974 | 0.5227 | 0.8824 |
Two stage (50 epoch) | 0.3003 | 0.3133 | 0.4270 | 0.2696 | 0.3627 | 0.4006 | 0.3733 | 0.5240 | 0.3243 | 0.3276 |
Two stage (30 epoch) | 0.3272 | 0.3248 | 0.3920 | 0.3023 | 0.3238 | 0.4337 | 0.3691 | 0.5604 | 0.2510 | 0.2918 |
Two stage (25 epoch) | 0.3439 | 0.2900 | 0.3940 | 0.2795 | 0.3075 | 0.3657 | 0.3254 | 0.5133 | 0.3002 | 0.3253 |
Two stage (20 epoch) | 0.3814 | 0.3038 | 0.4293 | 0.3132 | 0.3055 | 0.3650 | 0.3218 | 0.4948 | 0.2516 | 0.3534 |
Two stage (15 epoch) | 0.3727 | 0.2299 | 0.4077 | 0.3572 | 0.3299 | 0.4197 | 0.3126 | 0.4213 | 0.3078 | 0.3053 |
Two stage (10 epoch) | 0.3319 | 0.2372 | 0.3516 | 0.3315 | 0.3709 | 0.3883 | 0.3709 | 0.4483 | 0.2579 | 0.3074 |
Stage/Cluster | Digit 0 | Digit 1 | Digit 2 | Digit 3 | Digit 4 | Digit 5 | Digit 6 | Digit 7 | Digit 8 | Digit 9 |
---|---|---|---|---|---|---|---|---|---|---|
One stage | 0.7689 | 0.5903 | 0.5389 | 0.6551 | 0.7750 | 0.7185 | 0.7386 | 0.9349 | 0.6892 | 0.8449 |
Two stage (50 epoch) | 0.3509 | 0.3345 | 0.3659 | 0.3366 | 0.3916 | 0.4667 | 0.3281 | 0.5737 | 0.3655 | 0.2778 |
Two stage (30 epoch) | 0.3194 | 0.3415 | 0.3356 | 0.3410 | 0.3763 | 0.3280 | 0.3356 | 0.4825 | 0.3035 | 0.2602 |
Two stage (25 epoch) | 0.3912 | 0.3582 | 0.3861 | 0.3695 | 0.3686 | 0.4229 | 0.3287 | 0.5040 | 0.3699 | 0.3368 |
Two stage (20 epoch) | 0.3706 | 0.3396 | 0.3503 | 0.3869 | 0.3784 | 0.4396 | 0.3620 | 0.5676 | 0.3500 | 0.3260 |
Two stage (15 epoch) | 0.3186 | 0.3245 | 0.3887 | 0.3901 | 0.4236 | 0.4273 | 0.3295 | 0.4660 | 0.2948 | 0.2926 |
Two stage (10 epoch) | 0.4081 | 0.3260 | 0.3418 | 0.3785 | 0.3152 | 0.3587 | 0.3313 | 0.4718 | 0.3157 | 0.3764 |
Digits | Digit 0 | Digit 1 | Digit 2 | Digit 3 | Digit 4 | Digit 5 | Digit 6 | Digit 7 | Digit 8 | Digit 9 |
---|---|---|---|---|---|---|---|---|---|---|
Digit 0 | 0 | 9.8748 | 5.8467 | 5.8775 | 5.9938 | 4.7561 | 5.3691 | 6.3096 | 6.8799 | 6.0279 |
Digit 1 | 9.8748 | 0 | 6.8908 | 8.2924 | 6.4615 | 7.1265 | 6.5954 | 5.9076 | 7.8357 | 5.5381 |
Digit 2 | 5.8467 | 6.8908 | 0 | 5.3733 | 4.8058 | 4.6786 | 4.2704 | 4.9557 | 5.0231 | 4.8123 |
Digit 3 | 5.8775 | 8.2924 | 5.3733 | 0 | 5.4038 | 3.7772 | 5.6887 | 4.9538 | 5.3137 | 4.5252 |
Digit 4 | 5.9938 | 6.4615 | 4.8058 | 5.4038 | 0 | 4.3211 | 4.7730 | 3.9199 | 4.7242 | 2.9392 |
Digit 5 | 4.7561 | 7.1265 | 4.6786 | 3.7772 | 4.3211 | 0 | 3.8773 | 4.5386 | 4.4424 | 3.9667 |
Digit 6 | 5.3691 | 6.5954 | 4.2704 | 5.6887 | 4.7730 | 3.8773 | 0 | 5.6352 | 5.5718 | 5.3602 |
Digit 7 | 6.3096 | 5.9076 | 4.9557 | 4.9538 | 3.9199 | 4.5386 | 5.6352 | 0 | 4.9600 | 2.3206 |
Digit 8 | 6.8799 | 7.8357 | 5.0231 | 5.3137 | 4.7242 | 4.4424 | 5.5718 | 4.9600 | 0 | 3.7385 |
Digit 9 | 6.0279 | 5.5381 | 4.8123 | 4.5252 | 2.9392 | 3.9667 | 5.3602 | 2.3206 | 3.7385 | 0 |
Digits | Digit 0 | Digit 1 | Digit 2 | Digit 3 | Digit 4 | Digit 5 | Digit 6 | Digit 7 | Digit 8 | Digit 9 |
---|---|---|---|---|---|---|---|---|---|---|
Digit 0 | 0 | 11.3646 | 6.3528 | 9.2070 | 8.6145 | 6.5908 | 7.0915 | 8.1459 | 8.1696 | 9.9020 |
Digit 1 | 11.3646 | 0 | 7.7678 | 10.2732 | 8.4149 | 8.0777 | 9.9724 | 7.5722 | 8.6099 | 8.6258 |
Digit 2 | 6.3528 | 7.7678 | 0 | 7.0777 | 7.1212 | 6.2013 | 6.1736 | 5.9118 | 5.7625 | 7.6732 |
Digit 3 | 9.2070 | 10.2732 | 7.0777 | 0 | 8.4951 | 6.3814 | 9.6334 | 6.6971 | 6.9023 | 7.8166 |
Digit 4 | 8.6145 | 8.4149 | 7.1212 | 8.4951 | 0 | 6.2550 | 8.3657 | 6.1707 | 6.5198 | 5.7475 |
Digit 5 | 6.5908 | 8.0777 | 6.2013 | 6.3814 | 6.2550 | 0 | 5.9684 | 6.2361 | 5.5147 | 6.9847 |
Digit 6 | 7.0915 | 9.9724 | 6.1736 | 9.6334 | 8.3657 | 5.9684 | 0 | 8.5955 | 8.0326 | 10.4945 |
Digit 7 | 8.1459 | 7.5722 | 5.9118 | 6.6971 | 6.1707 | 6.2361 | 8.5955 | 0 | 5.9426 | 4.4272 |
Digit 8 | 8.1696 | 8.6099 | 5.7625 | 6.9023 | 6.5198 | 5.5147 | 8.0326 | 5.9426 | 0 | 6.5642 |
Digit 9 | 9.9020 | 8.6258 | 7.6732 | 7.8166 | 5.7475 | 6.9847 | 10.4945 | 4.4272 | 6.5642 | 0 |
Digits | Digit 0 | Digit 1 | Digit 2 | Digit 3 | Digit 4 | Digit 5 | Digit 6 | Digit 7 | Digit 8 | Digit 9 |
---|---|---|---|---|---|---|---|---|---|---|
Digit 0 | 0 | 1.1509 | 1.0866 | 1.5665 | 1.4372 | 1.3858 | 1.3208 | 1.2910 | 1.1875 | 1.6427 |
Digit 1 | 1.1509 | 0 | 1.1273 | 1.2389 | 1.3023 | 1.1335 | 1.5120 | 1.2818 | 1.0988 | 1.5575 |
Digit 2 | 1.0866 | 1.1273 | 0 | 1.3172 | 1.4818 | 1.3255 | 1.4457 | 1.1929 | 1.1472 | 1.5945 |
Digit 3 | 1.5665 | 1.2389 | 1.3172 | 0 | 1.5721 | 1.6894 | 1.6934 | 1.3519 | 1.2990 | 1.7273 |
Digit 4 | 1.4372 | 1.3023 | 1.4818 | 1.5721 | 0 | 1.4475 | 1.7527 | 1.5742 | 1.3801 | 1.9555 |
Digit 5 | 1.3858 | 1.1335 | 1.3255 | 1.6894 | 1.4475 | 0 | 1.5393 | 1.3740 | 1.2414 | 1.7608 |
Digit 6 | 1.3208 | 1.5120 | 1.4457 | 1.6934 | 1.7527 | 1.5393 | 0 | 1.5253 | 1.4416 | 1.9579 |
Digit 7 | 1.2910 | 1.2818 | 1.1929 | 1.3519 | 1.5742 | 1.3740 | 1.5253 | 0 | 1.1981 | 1.9078 |
Digit 8 | 1.1875 | 1.0988 | 1.1472 | 1.2990 | 1.3801 | 1.2414 | 1.4416 | 1.1981 | 0 | 1.7558 |
Digit 9 | 1.6427 | 1.5575 | 1.5945 | 1.7273 | 1.9555 | 1.7608 | 1.9579 | 1.9078 | 1.7558 | 0 |
Stage/Cluster | Digit 0 | Digit 1 | Digit 2 | Digit 3 | Digit 4 | Digit 5 | Digit 6 | Digit 7 | Digit 8 | Digit 9 |
---|---|---|---|---|---|---|---|---|---|---|
One stage | 0.8528 | 0.8807 | 0.7602 | 0.8453 | 0.8398 | 0.8349 | 0.9544 | 0.9431 | 0.8829 | 0.9686 |
Two stage (50 epoch) | 0.4402 | 0.3983 | 0.4066 | 0.4055 | 0.3644 | 0.3150 | 0.3390 | 0.4530 | 0.3436 | 0.4012 |
Two stage (30 epoch) | 0.4377 | 0.4302 | 0.3775 | 0.4428 | 0.3153 | 0.3705 | 0.3999 | 0.5035 | 0.3684 | 0.3494 |
Two stage (25 epoch) | 0.4074 | 0.4057 | 0.3848 | 0.4336 | 0.3475 | 0.3611 | 0.4249 | 0.4539 | 0.3450 | 0.4115 |
Two stage (20 epoch) | 0.4173 | 0.3745 | 0.3910 | 0.3960 | 0.3703 | 0.2929 | 0.3864 | 0.4346 | 0.3773 | 0.4278 |
Two stage (15 epoch) | 0.4234 | 0.3822 | 0.3867 | 0.3810 | 0.3570 | 0.3651 | 0.4407 | 0.3893 | 0.3582 | 0.4257 |
Two stage (10 epoch) | 0.3593 | 0.4270 | 0.3813 | 0.4151 | 0.3298 | 0.2729 | 0.4335 | 0.4621 | 0.3501 | 0.4343 |
Stage/Cluster | Digit 0 | Digit 1 | Digit 2 | Digit 3 | Digit 4 | Digit 5 | Digit 6 | Digit 7 | Digit 8 | Digit 9 |
---|---|---|---|---|---|---|---|---|---|---|
One stage | 0.8216 | 0.9208 | 0.7924 | 0.8668 | 0.8062 | 0.8346 | 0.9822 | 0.9548 | 0.8864 | 0.9897 |
Two stage (50 epoch) | 0.3576 | 0.4009 | 0.3868 | 0.4353 | 0.3202 | 0.3851 | 0.3788 | 0.5001 | 0.3651 | 0.4702 |
Two stage (30 epoch) | 0.4371 | 0.4241 | 0.4348 | 0.4427 | 0.3489 | 0.3826 | 0.4151 | 0.4505 | 0.3748 | 0.4831 |
Two stage (25 epoch) | 0.3796 | 0.3756 | 0.4182 | 0.3315 | 0.4091 | 0.2733 | 0.4364 | 0.4433 | 0.3914 | 0.4414 |
Two stage (20 epoch) | 0.4154 | 0.3689 | 0.4422 | 0.4776 | 0.4668 | 0.3932 | 0.3988 | 0.4533 | 0.4243 | 0.4175 |
Two stage (15 epoch) | 0.3735 | 0.3422 | 0.4489 | 0.4090 | 0.3930 | 0.4430 | 0.3760 | 0.4891 | 0.3823 | 0.4644 |
Two stage (10 epoch) | 0.8216 | 0.9208 | 0.7924 | 0.8668 | 0.8062 | 0.8346 | 0.9822 | 0.9548 | 0.8864 | 0.9897 |
Digits | Digit 0 | Digit 1 | Digit 2 | Digit 3 | Digit 4 | Digit 5 | Digit 6 | Digit 7 | Digit 8 | Digit 9 |
---|---|---|---|---|---|---|---|---|---|---|
Digit 0 | 0 | 8.9490 | 7.1822 | 6.7094 | 7.5911 | 5.4839 | 6.6199 | 7.1983 | 6.6764 | 6.9278 |
Digit 1 | 8.9490 | 0 | 6.1465 | 5.9734 | 6.7315 | 5.6308 | 6.2385 | 5.9189 | 5.3469 | 5.7358 |
Digit 2 | 7.1822 | 6.1465 | 0 | 5.5477 | 5.8153 | 5.6525 | 4.6556 | 6.3348 | 4.6635 | 5.6461 |
Digit 3 | 6.7094 | 5.9734 | 5.5477 | 0 | 6.4290 | 3.8336 | 6.2177 | 5.9367 | 4.1482 | 5.3524 |
Digit 4 | 7.5911 | 6.7315 | 5.8153 | 6.4290 | 0 | 5.0809 | 4.9329 | 4.5674 | 5.2593 | 2.9364 |
Digit 5 | 5.4839 | 5.6308 | 5.6525 | 3.8336 | 5.0809 | 0 | 4.8664 | 5.0609 | 3.7842 | 4.2076 |
Digit 6 | 6.6199 | 6.2385 | 4.6556 | 6.2177 | 4.9329 | 4.8664 | 0 | 5.9810 | 5.1489 | 4.8942 |
Digit 7 | 7.1983 | 5.9189 | 6.3348 | 5.9367 | 4.5674 | 5.0609 | 5.9810 | 0 | 5.3735 | 3.0897 |
Digit 8 | 6.6764 | 5.3469 | 4.6635 | 4.1482 | 5.2593 | 3.7842 | 5.1489 | 5.3735 | 0 | 4.1881 |
Digit 9 | 6.9278 | 5.7358 | 5.6461 | 5.3524 | 2.9364 | 4.2076 | 4.8942 | 3.0897 | 4.1881 | 0 |
Digits | Digit 0 | Digit 1 | Digit 2 | Digit 3 | Digit 4 | Digit 5 | Digit 6 | Digit 7 | Digit 8 | Digit 9 |
---|---|---|---|---|---|---|---|---|---|---|
Digit 0 | 0 | 8.4546 | 6.3110 | 6.2432 | 8.1580 | 5.4891 | 7.8137 | 7.2026 | 6.2925 | 7.3703 |
Digit 1 | 8.4546 | 0 | 6.2979 | 6.1388 | 8.9035 | 7.8212 | 8.1683 | 6.8096 | 6.5099 | 7.5594 |
Digit 2 | 6.3110 | 6.2979 | 0 | 5.4763 | 7.1528 | 6.9759 | 6.4080 | 6.7837 | 5.8246 | 6.8386 |
Digit 3 | 6.2432 | 6.1388 | 5.4763 | 0 | 8.0550 | 5.3969 | 8.2691 | 6.1786 | 5.2527 | 6.5728 |
Digit 4 | 8.1580 | 8.9035 | 7.1528 | 8.0550 | 0 | 7.7562 | 6.9311 | 6.2156 | 7.0799 | 4.2345 |
Digit 5 | 5.4891 | 7.8212 | 6.9759 | 5.3969 | 7.7562 | 0 | 7.7062 | 7.2702 | 5.3668 | 6.9289 |
Digit 6 | 7.8137 | 8.1683 | 6.4080 | 8.2691 | 6.9311 | 7.7062 | 0 | 8.3848 | 7.5591 | 7.5293 |
Digit 7 | 7.2026 | 6.8096 | 6.7837 | 6.1786 | 6.2156 | 7.2702 | 8.3848 | 0 | 6.8602 | 4.2942 |
Digit 8 | 6.2925 | 6.5099 | 5.8246 | 5.2527 | 7.0799 | 5.3668 | 7.5591 | 6.8602 | 0 | 6.1857 |
Digit 9 | 7.3703 | 7.5594 | 6.8386 | 6.5728 | 4.2345 | 6.9289 | 7.5293 | 4.2942 | 6.1857 | 0 |
Digits | Digit 0 | Digit 1 | Digit 2 | Digit 3 | Digit 4 | Digit 5 | Digit 6 | Digit 7 | Digit 8 | Digit 9 |
---|---|---|---|---|---|---|---|---|---|---|
Digit 0 | 0 | 0.9448 | 0.8787 | 0.9305 | 1.0747 | 1.0009 | 1.1803 | 1.0006 | 0.9425 | 1.0639 |
Digit 1 | 0.9448 | 0 | 1.0246 | 1.0277 | 1.3227 | 1.3890 | 1.3093 | 1.1505 | 1.2175 | 1.3179 |
Digit 2 | 0.8787 | 1.0246 | 0 | 0.9871 | 1.2300 | 1.2341 | 1.3764 | 1.0709 | 1.2490 | 1.2112 |
Digit 3 | 0.9305 | 1.0277 | 0.9871 | 0 | 1.2529 | 1.4078 | 1.3299 | 1.0407 | 1.2662 | 1.2280 |
Digit 4 | 1.0747 | 1.3227 | 1.2300 | 1.2529 | 0 | 1.5265 | 1.4051 | 1.3609 | 1.3462 | 1.4421 |
Digit 5 | 1.0009 | 1.3890 | 1.2341 | 1.4078 | 1.5265 | 0 | 1.5836 | 1.4365 | 1.4182 | 1.6468 |
Digit 6 | 1.1803 | 1.3093 | 1.3764 | 1.3299 | 1.4051 | 1.5836 | 0 | 1.4019 | 1.4681 | 1.5384 |
Digit 7 | 1.0006 | 1.1505 | 1.0709 | 1.0407 | 1.3609 | 1.4365 | 1.4019 | 0 | 1.2767 | 1.3898 |
Digit 8 | 0.9425 | 1.2175 | 1.2490 | 1.2662 | 1.3462 | 1.4182 | 1.4681 | 1.2767 | 0 | 1.4770 |
Digit 9 | 1.0639 | 1.3179 | 1.2112 | 1.2280 | 1.4421 | 1.6468 | 1.5384 | 1.3898 | 1.4770 | 0 |
Training Size | 500 | 1000 | 2000 | 4000 | 7291 |
---|---|---|---|---|---|
Two-Stage | 88.29 | 90.17 | 90.68 | 91.60 | 90.8451 |
One-Stage | 84.89 | 86.89 | 88.80 | 90.13 | 89.2631 |
Epoch/Training Size | 500 | 1000 | 2000 | 4000 |
---|---|---|---|---|
10 | 87.4890 | 89.4195 | 90.6508 | 91.3091 |
15 | 87.2824 | 89.4919 | 90.2459 | 91.5539 |
20 | 87.7258 | 89.7536 | 90.4792 | 91.4046 |
25 | 88.2981 | 89.3516 | 90.6851 | 91.5269 |
30 | 87.6763 | 89.3163 | 90.5018 | 91.5633 |
50 | 88.1997 | 90.1713 | 90.3087 | 91.6021 |
One-stage | 84.8964 | 86.8968 | 88.8011 | 90.1319 |
Training Size | 5000 | 10,000 | 60,000 |
---|---|---|---|
Two-Stage | 93.4712 | 94.1145 | 97.2372 |
One-Stage | 94.2240 | 95.3311 | 97.1316 |
Training Size | 500 | 1000 | 2000 | 4000 | 7291 |
---|---|---|---|---|---|
Two-stage | 99.3362 | 99.72 | 99.79 | 99.922 | 99.9863 |
One-stage | 98.26 | 98.08 | 98.42 | 97.69 | 97.209 |
Training Size | 5000 | 10,000 | 20,000 | 60,000 |
---|---|---|---|---|
Two-stage | 99.9074 | 99.9024 | 99.9376 | 99.9815 |
One-stage | 97.8223 | 97.9693 | 98.1475 | 96.6545 |
Epoch/Training Size | 5000 | 10,000 | 20,000 |
---|---|---|---|
10 | 99.3978 | 99.5357 | 99.6363 |
15 | 99.1285 | 99.5958 | 99.7012 |
20 | 99.2428 | 99.5187 | 99.7647 |
25 | 99.2418 | 99.6123 | 99.7198 |
30 | 99.3296 | 99.4849 | 99.6489 |
50 | 99.0874 | 99.6048 | 99.6929 |
One-stage | 97.8109 | 98.0697 | 98.1475 |
MNIST | USPS | |||
---|---|---|---|---|
SVM | MDC | SVM | MDC | |
One-stage | 98.1475 | 97.1316 | 98.42 | 90.13 |
Two-stage | 99.9815 | 97.2372 | 99.9863 | 91.60 |
Methods | Error Rates |
---|---|
LDANet-2 (Chan et al. [21]) | 0.62 |
PCANet-1 (L1′ = 64, k1′ = k2′ = 3) (Chan et al. [21]) | 0.62 |
Scatnet-2 (SVM rbf) (Bruno et al. [9]) | 0.43 |
Conv. Maxout and DropoutConv. Maxout and Dropout (Goodfellow et al. [23]) | 0.45 |
Stochastic pooling ConvNet (Zeiler et al. [24]) | 0.47 |
ConvNet (Jarrett et al. [8]) | 0.53 |
HSC (Yu et al. [26]) | 0.77 |
K-NN-IDM (Keysers et al. [27]) | 0.54 |
CDBN (Lee et al. [28]) | 0.82 |
KNN-SVM (Prasad et al. [39]) | 0.74 |
Deep Morph-CNN (Mellouli et al. [33]) | 0.34 |
NRC (Xu et al. [34]) | 1 |
One-stage features on different classifiers | |
SVM | 1.8525 |
MDC | 2.8684 |
Two-stage features on different classifiers | |
SVM | 0.0185 |
MDC | 2.7628 |
Methods | Error Rates |
---|---|
NRC (Xu et al. [34]) | 4.90 |
Scatnet-2 (SVM rbf) (Bruno et al. [9]) | 2.30 |
IDM (Keysers et al. [27]) | 1.90 |
Online SVM learning (Tax et al., 2003 [44]) | 4.25 |
Discriminant-based supervised learning (Mairal et al. [30]) | 2.40 |
SVM KNN (Zhang et al. [31]) | 2.59 |
MQDF (Su et al. [32]) | 2.19 |
One-stage features on different classifiers | |
SVM | 1.58 |
MDC | 9.87 |
Two-stage features on different classifiers | |
SVM | 0.0137 |
MDC | 8.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunler Pirim, M.A.; Tora, H.; Oztoprak, K.; Butun, İ. Two-Stage Feature Generator for Handwritten Digit Classification. Sensors 2023, 23, 8477. https://doi.org/10.3390/s23208477
Gunler Pirim MA, Tora H, Oztoprak K, Butun İ. Two-Stage Feature Generator for Handwritten Digit Classification. Sensors. 2023; 23(20):8477. https://doi.org/10.3390/s23208477
Chicago/Turabian StyleGunler Pirim, M. Altinay, Hakan Tora, Kasim Oztoprak, and İsmail Butun. 2023. "Two-Stage Feature Generator for Handwritten Digit Classification" Sensors 23, no. 20: 8477. https://doi.org/10.3390/s23208477
APA StyleGunler Pirim, M. A., Tora, H., Oztoprak, K., & Butun, İ. (2023). Two-Stage Feature Generator for Handwritten Digit Classification. Sensors, 23(20), 8477. https://doi.org/10.3390/s23208477