Using Distributed Temperature Sensing for Long-Term Monitoring of Pockmark Activity in the Gulf of Patras (Greece): Data Processing Hints and Preliminary Findings
Abstract
:1. Introduction
2. The Patras Gulf Pockmark Field
2.1. Geographical and Geological Setting
2.2. Pockmark Field Activation and Gas Seepages’ Temperature Imprint
3. Materials and Methods
3.1. Monitoring Site Selection and DTS Deployment
3.2. DTS Data Acquisition and Manipulation
3.3. Earthquake Activity and Environmental Data Retrieval
3.4. Spectral Analysis with Incomplete Data: The CLEAN Algorithm
3.5. Data Preparation and Statistical Treatment
4. Results
4.1. DTS Data Screening: Date-Time and Depth Dependencies
4.2. Spectral Analysis: Separating Background Environmental Components from Anomalous Events
4.3. Correlation to Environmental Datasets
4.4. Association with Earthquake Activity
5. Conclusions/Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Min, R.; Liu, Z.; Pereira, L.; Yang, C.; Sui, Q.; Marques, C. Optical Fiber Sensing for Marine Environment and Marine Structural Health Monitoring: A Review. Opt. Laser Technol. 2021, 140, 107082. [Google Scholar] [CrossRef]
- Kumari, C.R.U.; Samiappan, D.; Kumar, R.; Sudhakar, T. Fiber Optic Sensors in Ocean Observation: A Comprehensive Review. Optik 2019, 179, 351–360. [Google Scholar] [CrossRef]
- Lu, P.; Lalam, N.; Badar, M.; Liu, B.; Chorpening, B.T.; Buric, M.P.; Ohodnicki, P.R. Distributed Optical Fiber Sensing: Review and Perspective. Appl. Phys. Rev. 2019, 6, 041302. [Google Scholar] [CrossRef]
- Goetz, J.D.; Kalnajs, L.E.; Deshler, T.; Davis, S.M.; Bramberger, M.; Alexander, M.J. A Fiber-Optic Distributed Temperature Sensor for Continuous in Situ Profiling up to 2 Km beneath Constant-Altitude Scientific Balloons. Atmos. Meas. Tech. 2023, 16, 791–807. [Google Scholar] [CrossRef]
- Dakin, J.P.; Pratt, D.J.; Bibby, G.W.; Ross, J.N. Distributed Optical Fiber Raman Temperature Sensor Using a Semiconductor Light Source and Detector. Electron. Lett. 1985, 21, 569. [Google Scholar] [CrossRef]
- Ide, S.; Araki, E.; Matsumoto, H. Very Broadband Strain-Rate Measurements along a Submarine Fiber-Optic Cable off Cape Muroto, Nankai Subduction Zone, Japan. Earth Planets Space 2021, 73, 63. [Google Scholar] [CrossRef]
- Ip, E.; Fang, J.; Li, Y.; Wang, Q.; Huang, M.-F.; Salemi, M.; Huang, Y.-K. Distributed Fiber Sensor Network Using Telecom Cables as Sensing Media: Technology Advancements and Applications [Invited]. J. Opt. Commun. Netw. 2022, 14, A61. [Google Scholar] [CrossRef]
- Smolen, J.J.; van der Spek, A. Distributed Temperature Sensing. In A Primer for Oil and Gas Production; Shell: London, UK, 2003. [Google Scholar]
- van Emmerik, T.H.M.; Rimmer, A.; Lechinsky, Y.; Wenker, K.J.R.; Nussboim, S.; van de Giesen, N.C. Measuring Heat Balance Residual at Lake Surface Using Distributed Temperature Sensing. Limnol. Oceanogr. Methods 2013, 11, 79–90. [Google Scholar] [CrossRef]
- Bense, V.F.; Read, T.; Verhoef, A. Using Distributed Temperature Sensing to Monitor Field Scale Dynamics of Ground Surface Temperature and Related Substrate Heat Flux. Agric. For. Meteorol. 2016, 220, 207–215. [Google Scholar] [CrossRef]
- Harrington, J.S.; Hayashi, M. Application of Distributed Temperature Sensing for Mountain Permafrost Mapping. Permafr. Periglac. Process. 2019, 30, 113–120. [Google Scholar] [CrossRef]
- Carlino, S.; Mirabile, M.; Troise, C.; Sacchi, M.; Zeni, L.; Minardo, A.; Caccavale, M.; Darányi, V.; De Natale, G. Distributed-Temperature-Sensing Using Optical Methods: A First Application in the Offshore Area of Campi Flegrei Caldera (Southern Italy) for Volcano Monitoring. Remote Sens. 2016, 8, 674. [Google Scholar] [CrossRef]
- Hatley, R.; Shehata, M.; Sayde, C.; Castro-Bolinaga, C. High-Resolution Monitoring of Scour Using a Novel Fiber-Optic Distributed Temperature Sensing Device: A Proof-of-Concept Laboratory Study. Sensors 2023, 23, 3758. [Google Scholar] [CrossRef]
- Selker, J.S.; Thévenaz, L.; Huwald, H.; Mallet, A.; Luxemburg, W.; van de Giesen, N.; Stejskal, M.; Zeman, J.; Westhoff, M.; Parlange, M.B. Distributed Fiber-Optic Temperature Sensing for Hydrologic Systems. Water Resour. Res. 2006, 42, W12202. [Google Scholar] [CrossRef]
- Shinohara, M.; Yamada, T.; Akuhara, T.; Mochizuki, K.; Sakai, S.; Hamakawa, M.; Kasajima, T.; Arioka, T.; Kubota, S. Distributed Acoustic Sensing Measurement by Using Seafloor Optical Fiber Cable System off Sanriku for Seismic Observation. In Proceedings of the OCEANS 2019 MTS/IEEE SEATTLE, Seattle, WA, USA, 27–31 October 2019; IEEE: New York, NY, USA, 2019; pp. 1–4. [Google Scholar]
- Shinohara, M.; Yamada, T.; Akuhara, T.; Mochizuki, K.; Sakai, S. Performance of Seismic Observation by Distributed Acoustic Sensing Technology Using a Seafloor Cable Off Sanriku, Japan. Front. Mar. Sci. 2022, 9, 844506. [Google Scholar] [CrossRef]
- Baba, S.; Araki, E.; Yamamoto, Y.; Hori, T.; Fujie, G.; Nakamura, Y.; Yokobiki, T.; Matsumoto, H. Observation of Shallow Slow Earthquakes by Distributed Acoustic Sensing Using Offshore Fiber-Optic Cable in the Nankai Trough, Southwest Japan. Geophys. Res. Lett. 2023, 50, e2022GL102678. [Google Scholar] [CrossRef]
- Sinnett, G.; Davis, K.A.; Lucas, A.J.; Giddings, S.N.; Reid, E.; Harvey, M.E.; Stokes, I. Distributed Temperature Sensing for Oceanographic Applications. J. Atmos. Ocean. Technol. 2020, 37, 1987–1997. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, S.; Yang, C.; Chung, W.-H.; Li, Z. Submarine Optical Fiber Sensing System for the Real-Time Monitoring of Depth, Vibration, and Temperature. Front. Mar. Sci. 2022, 9, 922669. [Google Scholar] [CrossRef]
- Chen, S.; Wang, J.; Zhang, C.; Li, M.; Li, N.; Wu, H.; Liu, Y.; Peng, W.; Song, Y. Marine Structural Health Monitoring with Optical Fiber Sensors: A Review. Sensors 2023, 23, 1877. [Google Scholar] [CrossRef]
- Blum, J.A.; Nooner, S.L.; Zumberge, M.A. Recording Earth Strain With Optical Fibers. IEEE Sens. J. 2008, 8, 1152–1160. [Google Scholar] [CrossRef]
- Connolly, T.P.; Kirincich, A.R. High-Resolution Observations of Subsurface Fronts and Alongshore Bottom Temperature Variability Over the Inner Shelf. J. Geophys. Res. Oceans 2019, 124, 593–614. [Google Scholar] [CrossRef]
- Wood, P. Hearing With Light! GEO ExPro 2013, 10, 54–56. [Google Scholar]
- Embriaco, D.; Marinaro, G.; Frugoni, F.; Monna, S.; Etiope, G.; Gasperini, L.; Polonia, A.; Del Bianco, F.; Çağatay, M.N.; Ulgen, U.B.; et al. Monitoring of Gas and Seismic Energy Release by Multiparametric Benthic Observatory along the North Anatolian Fault in the Sea of Marmara (NW Turkey). Geophys. J. Int. 2014, 196, 850–866. [Google Scholar] [CrossRef]
- Kordella, S.; Christodoulou, D.; Fakiris, E.; Geraga, M.; Kokkalas, S.; Marinaro, G.; Iatrou, M.; Ferentinos, G.; Papatheodorou, G. Gas Seepage-Induced Features in the Hypoxic/Anoxic, Shallow, Marine Environment of Amfilochia Bay, Amvrakikos Gulf (Western Greece). Geosciences 2021, 11, 27. [Google Scholar] [CrossRef]
- Marinaro, G.; Etiope, G.; Bue, N.L.; Favali, P.; Papatheodorou, G.; Christodoulou, D.; Furlan, F.; Gasparoni, F.; Ferentinos, G.; Masson, M.; et al. Monitoring of a Methane-Seeping Pockmark by Cabled Benthic Observatory (Patras Gulf, Greece). Geo-Mar. Lett. 2006, 26, 297–302. [Google Scholar] [CrossRef]
- Christodoulou, D.; Papatheodorou, G.; Ferentinos, G.; Masson, M. Active Seepage in Two Contrasting Pockmark Fields in the Patras and Corinth Gulfs, Greece. Geo-Mar. Lett. 2003, 23, 194–199. [Google Scholar] [CrossRef]
- Wei, J.; Liang, J.; Lu, J.; Zhang, W.; He, Y. Characteristics and Dynamics of Gas Hydrate Systems in the Northwestern South China Sea—Results of the Fifth Gas Hydrate Drilling Expedition. Mar. Pet. Geol. 2019, 110, 287–298. [Google Scholar] [CrossRef]
- Hasiotis, T.; Papatheodorou, G.; Kastanos, N.; Ferentinos, G. A Pockmark Field in the Patras Gulf (Greece) and Its Activation during the 14/7/93 Seismic Event. Mar. Geol. 1996, 130, 333–344. [Google Scholar] [CrossRef]
- Leifer, I.; Boles, J. Measurement of Marine Hydrocarbon Seep Flow through Fractured Rock and Unconsolidated Sediment. Mar. Pet. Geol. 2005, 22, 551–568. [Google Scholar] [CrossRef]
- Field, M.E.; Jennings, A.E. Seafloor Gas Seeps Triggered by a Northern California Earthquake. Mar. Geol. 1987, 77, 39–51. [Google Scholar] [CrossRef]
- King, G.C.P. Speculations on the Geometry of the Initiation and Termination Processes of Earthquake Rupture and Its Relation to Morphology and Geological Structure. Pure Appl. Geophys. PAGEOPH 1986, 124, 567–585. [Google Scholar] [CrossRef]
- Mellors, R.; Kilb, D.; Aliyev, A.; Gasanov, A.; Yetirmishli, G. Correlations between Earthquakes and Large Mud Volcano Eruptions. J. Geophys. Res. Solid Earth 2007, 112, 1–11. [Google Scholar] [CrossRef]
- Tary, J.B.; Géli, L.; Guennou, C.; Henry, P.; Sultan, N.; Çağatay, N.; Vidal, V. Microevents Produced by Gas Migration and Expulsion at the Seabed: A Study Based on Sea Bottom Recordings from the Sea of Marmara. Geophys. J. Int. 2012, 190, 993–1007. [Google Scholar] [CrossRef]
- Tsang-Hin-Sun, E.; Batsi, E.; Klingelhoefer, F.; Géli, L. Spatial and Temporal Dynamics of Gas-Related Processes in the Sea of Marmara Monitored with Ocean Bottom Seismometers. Geophys. J. Int. 2019, 216, 1989–2003. [Google Scholar] [CrossRef]
- Weinlich, F.H.; Faber, E.; Boušková, A.; Horálek, J.; Teschner, M.; Poggenburg, J. Seismically Induced Variations in Mariánské Lázně Fault Gas Composition in the NW Bohemian Swarm Quake Region, Czech Republic—A Continuous Gas Monitoring. Tectonophysics 2006, 421, 89–110. [Google Scholar] [CrossRef]
- Papatheodorou, G.; Christodoulou, D.; Geraga, M.; Etiope, G.; Ferentinos, G. The Pockmark Field of the Gulf of Patras: An Ideal Natural Laboratory for Studying Seabed Fluid Flow. In Field Trip Guidebook of 25th IAS Meeting of Sedimentology, Patras, Greece; Oceanus-Lab: Patras, Greece, 10 June 2007; pp. 43–62. [Google Scholar]
- Christodoulou, D.; Papatheodorou, G.; Geraga, M.; Etiope, G.; Giannopoulos, N.; Kokkalas, S.; Dimas, X.; Fakiris, E.; Sergiou, S.; Georgiou, N.; et al. Geophysical and Geochemical Exploration of the Pockmark Field in the Gulf of Patras: New Insights on Formation, Growth and Activity. Appl. Sci. 2023, 13, 10449. [Google Scholar] [CrossRef]
- Christodoulou, D.; Papatheodorou, G.; Fakiris, E.; Etiope, G.; Ferentinos, G. The Activation of the Patras Gulf, Western Greece, Pockmark Field Triggered by the Mw=6.4R June 8, 2008 Earthquake. In Proceedings of the 10th International Conference on Gas Geochemistry, Cluj-Napoca, Romania, 14–21 September 2009; p. 30. [Google Scholar]
- Judd, A.G.; Hovland, M. Seabed Fluid Flow: The Impact of Geology, Biology and the Marine Environment; Cambridge University Press: Cambridge, UK, 2007; ISBN 9780521819503. [Google Scholar]
- Ferentinos, G.; Brooks, M.; Doutsos, T. Quaternary Tectonics in the Gulf of Patras, Western Greece. J. Struct. Geol. 1985, 7, 713–717. [Google Scholar] [CrossRef]
- Melis, N.S.; Brooks, M.; Pearce, R.G. A Microearthquake Study in the Gulf of Patras Region, Western Greece, and Its Seismotectonic Interpretation. Geophys. J. Int. 1989, 98, 515–524. [Google Scholar] [CrossRef]
- Chronis, G.; Piper, D.J.W.; Anagnostou, C. Late Quaternary Evolution of the Gulf of Patras, Greece: Tectonism, Deltaic Sedimentation and Sea-Level Change. Mar. Geol. 1991, 97, 191–209. [Google Scholar] [CrossRef]
- Ravasopoulos, J.; Papatheodorou, G.; Kapolos, J.; Geraga, M.; Koliadima, A.; Xenos, K. A promising methodology for the detection of pockmarks activation in nearshore sediments. Instrum. Sci. Technol. 2002, 30, 139–155. [Google Scholar] [CrossRef]
- Kordella, S.; Etiope, G.; Christodoulou, D.; Papatheodorou, G.; Lo Bue, N.; Geraga, M.; Ferentinos, G. Underwater Gas Seepage Detection and Monitoring in Katakolo Bay (Western Greece)—Preliminary Results. In Proceedings of the 10th Panhellenic Symposium of Oceanography and Fisheries, Athens, Greece, 7–11 May 2012. [Google Scholar]
- Mondanos, M.; Parker, T.; Milne, C.H.; Yeo, J.; Coleman, T.; Farhadiroushan, M. Distributed Temperature and Distributed Acoustic Sensing for Remote and Harsh Environments. In Proceedings of the SPIE, Baltimore, MD, USA, 13 May 2015; Volume 9491, p. 94910F. [Google Scholar]
- Valverde Ramírez, M.C.; de Campos Velho, H.F.; Ferreira, N.J. Artificial Neural Network Technique for Rainfall Forecasting Applied to the São Paulo Region. J. Hydrol. 2005, 301, 146–162. [Google Scholar] [CrossRef]
- Lambrakis, N.; Daskalaki, P. Environmental Aspects and the Exploitation of Groundwater Resources in Greece. In Proceedings of the XXIX Congress of IAH, Hydrogeology and Land Use Management, Bratislava, Slovakia, 6–10 September 1999; pp. 189–195. [Google Scholar]
- Little, R.J.A.; Rubin, D.B. Statistical Analysis with Missing Data; Wiley: Hoboken, NJ, USA, 2002; ISBN 9780471183860. [Google Scholar]
- Kalteh, A.M.; Hjorth, P. Imputation of Missing Values in a Precipitation–Runoff Process Database. Hydrol. Res. 2009, 40, 420–432. [Google Scholar] [CrossRef]
- Lo Presti, R.; Barca, E.; Passarella, G. A Methodology for Treating Missing Data Applied to Daily Rainfall Data in the Candelaro River Basin (Italy). Environ. Monit. Assess. 2010, 160, 1–22. [Google Scholar] [CrossRef]
- Furrer, R.; Genton, M. Analysis of Rainfall Data by Robust Spatial Statistics Using S+SpatialStats. J. Geogr. Inf. Decis. Anal. 1998, 2, 126–136. [Google Scholar]
- Matalas, N.C. Mathematical Assessment of Synthetic Hydrology. Water Resour. Res. 1967, 3, 937–945. [Google Scholar] [CrossRef]
- Delleur, J.W.; Tao, P.C.; Kavvas, M.L. An Evaluation of the Practicality and Complexity of Some Rainfall and Runoff Time Series Models. Water Resour. Res. 1976, 12, 953–970. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Rao, K.N.N. Solar and Tidal Reverberations of Deglaciation Records from the Tropical Western Pacific: A Clean Spectral Approach. Geofizika 2000, 33–41. [Google Scholar]
- Amoruso, A.; Crescentini, L. Nonlinear and Minor Ocean Tides in the Bay of Biscay from the Strain Tides Observed by Two Geodetic Laser Strainmeters at Canfranc (Spain). J. Geophys. Res. Oceans 2016, 121, 4873–4887. [Google Scholar] [CrossRef]
- Roberts, D.H.; Lehar, J.; Dreher, J.W. Time Series Analysis with Clean—Part One—Derivation of a Spectrum. Astron. J. 1987, 93, 968. [Google Scholar] [CrossRef]
- Wilson, R.E.; Eckley, I.A.; Nunes, M.A.; Park, T. A Wavelet-Based Approach for Imputation in Nonstationary Multivariate Time Series. Stat. Comput. 2021, 31, 18. [Google Scholar] [CrossRef]
- Baisch, S.; Bokelmann, G.H.R. Spectral Analysis with Incomplete Time Series: An Example from Seismology. Comput. Geosci. 1999, 25, 739–750. [Google Scholar] [CrossRef]
- Negi, J.G.; Tiwari, R.K.; Rao, K.N.N. Clean Periodicity in Secular Variations of Dolomite Abundance in Deep Marine Sediments. Mar. Geol. 1996, 133, 113–121. [Google Scholar] [CrossRef]
- Vio, R.; Cristiani, S.; Lessi, O.; Provenzale, A. Time Series Analysis in Astronomy—An Application to Quasar Variability Studies. Astrophys. J. 1992, 391, 518. [Google Scholar] [CrossRef]
- Marwan, N. Windowed Cross Correlation (corrgram). MATLAB Central File Exchange. 2023. Available online: https://www.mathworks.com/matlabcentral/fileexchange/15299-windowed-cross-correlation-corrgram (accessed on 14 October 2023).
- Whaley, D.L. The Interquartile Range: Theory and Estimation, Electronic Theses and Dissertations. Master’s Thesis, East Tennessee State University, Johnson, TN, USA, 2005. [Google Scholar]
- Fourniotis, N.T.; Horsch, G.M. Three-Dimensional Numerical Simulation of Wind-Induced Barotropic Circulation in the Gulf of Patras. Ocean. Eng. 2010, 37, 355–364. [Google Scholar] [CrossRef]
- Römer, M.; Riedel, M.; Scherwath, M.; Heesemann, M.; Spence, G.D. Tidally Controlled Gas Bubble Emissions: A Comprehensive Study Using Long-Term Monitoring Data from the NEPTUNE Cabled Observatory Offshore Vancouver Island. Geochem. Geophys. Geosystems 2016, 17, 3797–3814. [Google Scholar] [CrossRef]
- Franek, P.; Plaza-Faverola, A.; Mienert, J.; Buenz, S.; Ferré, B.; Hubbard, A. Microseismicity Linked to Gas Migration and Leakage on the Western Svalbard Shelf. Geochem. Geophys. Geosystems 2017, 18, 4623–4645. [Google Scholar] [CrossRef]
- Momma, H.; Iwase, R.; Mitsuzawa, K.; Kaiho, Y.; Fujiwara, Y. Preliminary Results of a Three-Year Continuous Observation by a Deep Seafloor Observatory in Sagami Bay, Central Japan. Phys. Earth Planet. Inter. 1998, 108, 263–274. [Google Scholar] [CrossRef]
- Duverger, C.; Lambotte, S.; Bernard, P.; Lyon-Caen, H.; Deschamps, A.; Nercessian, A. Dynamics of Microseismicity and Its Relationship with the Active Structures in the Western Corinth Rift (Greece). Geophys. J. Int. 2018, 215, 196–221. [Google Scholar] [CrossRef]
- Karakostas, B.; Papadimitriou, E.; Hatzfeld, D.; Makaris, D.; Makropoulos, K.; Diagourtas, D.; Papaioannou, C.; Stavrakakis, G.; Drakopoulos, J.; Papazachos, C. The Aftershock Sequence and Focal Properties of the July 14, 1993 (Ms = 5.4) Patras Earthquake. Bull. Geol. Soc. Greece 1994, 30, 167–174. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fakiris, E.; Papatheodorou, G.; Christodoulou, D.; Roumelioti, Z.; Sokos, E.; Geraga, M.; Giannakopoulos, V.; Dimas, X.; Ferentinos, G. Using Distributed Temperature Sensing for Long-Term Monitoring of Pockmark Activity in the Gulf of Patras (Greece): Data Processing Hints and Preliminary Findings. Sensors 2023, 23, 8520. https://doi.org/10.3390/s23208520
Fakiris E, Papatheodorou G, Christodoulou D, Roumelioti Z, Sokos E, Geraga M, Giannakopoulos V, Dimas X, Ferentinos G. Using Distributed Temperature Sensing for Long-Term Monitoring of Pockmark Activity in the Gulf of Patras (Greece): Data Processing Hints and Preliminary Findings. Sensors. 2023; 23(20):8520. https://doi.org/10.3390/s23208520
Chicago/Turabian StyleFakiris, Elias, George Papatheodorou, Dimitris Christodoulou, Zafeiria Roumelioti, Efthimios Sokos, Maria Geraga, Vasileios Giannakopoulos, Xenophon Dimas, and George Ferentinos. 2023. "Using Distributed Temperature Sensing for Long-Term Monitoring of Pockmark Activity in the Gulf of Patras (Greece): Data Processing Hints and Preliminary Findings" Sensors 23, no. 20: 8520. https://doi.org/10.3390/s23208520
APA StyleFakiris, E., Papatheodorou, G., Christodoulou, D., Roumelioti, Z., Sokos, E., Geraga, M., Giannakopoulos, V., Dimas, X., & Ferentinos, G. (2023). Using Distributed Temperature Sensing for Long-Term Monitoring of Pockmark Activity in the Gulf of Patras (Greece): Data Processing Hints and Preliminary Findings. Sensors, 23(20), 8520. https://doi.org/10.3390/s23208520