Long-Term Electrode–Skin Impedance Variation for Electromyographic Measurements
Abstract
:1. Introduction
2. Methods
2.1. Subjects
2.2. Instrumentation
2.3. Procedures
2.4. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Bouisset, S.; Do, M.C. Posture, dynamic stability, and voluntary movement. Neurophysiol. Clin./Clin. Neurophysiol. 2008, 38, 345–362. [Google Scholar] [CrossRef] [PubMed]
- Farina, D.; Merletti, R.; Enoka, R. The extraction of neural stategies from surface EMG. J. Appl. Physiol. 2004, 96, 1486–1495. [Google Scholar] [CrossRef] [PubMed]
- Campanini, I.; Merlo, A.; Degola, P.; Merletti, R.; Vezzosi, G.; Farina, D. Effect of electrode location on EMG signal envelope in leg muscles during gait. J. Electromyogr. Kinesiol. 2007, 17, 515–526. [Google Scholar] [CrossRef] [PubMed]
- Gondran, C.; Siebert, E.; Yacoub, S.; Novakov, E. Noise of surface bio-potential electrodes based on NASICON ceramic and Ag−AgCl. Med. Biol. Eng. Comput. 1996, 34, 460–466. [Google Scholar] [CrossRef]
- Clancy, E.A.; Morin, E.L.; Merletti, R. Sampling, noise-reduction and amplitude estimation issues in surface electromyography. J. Electromyogr. Kinesiol. 2002, 12, 1–16. [Google Scholar] [CrossRef]
- Fernández, M.; Pallás-Areny, R. Ag-AgCl electrode noise in high-resolution ECG measurements. Biomed. Instrum. Technol. 2000, 34, 125–130. [Google Scholar]
- Hermens, H.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Neuman, M.R. Biopotential Electrodes. In The Biomedical Engineering Handbook, 2nd ed.; Bronzino, J.D., Ed.; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Clarys, J.P.; Cabri, J. Electromyography and the study of sports movements: A review. J. Sports Sci. 1993, 11, 379–448. [Google Scholar] [CrossRef]
- Webster, J.G. Reducing Motion Artifacts and Interference in Biopotential Recording. Biomed. Eng. IEEE Trans. 1984, BME-31, 823–826. [Google Scholar] [CrossRef]
- Tam, H.; Webster, J.G. Minimizing Electrode Motion Artifact by Skin Abrasion. Biomed. Eng. IEEE Trans. 1977, BME-24, 134–139. [Google Scholar] [CrossRef]
- Hewson, D.J.; Hogrel, J.Y.; Langeron, Y.; Duchêne, J. Evolution in impedance at the electrode-skin interface of two types of surface EMG electrodes during long-term recordings. J. Electromyogr. Kinesiol. 2003, 13, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Vredenbregt, J.; Rau, G. Surface electromyography in relation to force, muscle length and endurance. In New Developments in Electromyography and Clinical Neurophysiology; Desmedt, J., Ed.; Karger: Basel, Switzerland, 1973. [Google Scholar]
- Huigen, E.; Peper, A.; Grimbergen, C.A. Investigation into the origin of the noise of surface electrodes. Med. Biol. Eng. Comput. 2002, 40, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Kappenman, E.S.; Luck, S.J. The Effects of Electrode Impedance on Data Quality and Statistical Significance in ERP Recordings. Psychophysiology 2010, 47, 888–904. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Ohta, S.; Uehara, T.; Tahara, S.; Ishizuka, Y. The measurement principle for evaluating the performance of drugs and cosmetics by skin impedance. Med. Biol. Eng. Comput. 1978, 16, 623–632. [Google Scholar] [CrossRef]
- Merletti, R.; Migliorini, M. Surface EMG electrode noise and contact impedance. In Proceedings of the Third General SENIAM Workshop, Aachen, Germany, 15–16 May 1998. [Google Scholar]
- Luck, S.J. An Introduction to the Event-Related Potential Technique; MIT Press: Cambridge, UK, 2005. [Google Scholar]
- Clar, E.J.; Her, C.P.; Sturelle, C.G. Skin impedance and moisturization. J. Soc. Cosmet. Chem. 1975, 26, 337–353. [Google Scholar]
- Alonso, A.; Meirelles, N.C.; Yushmanov, V.E.; Tabak, M. Water increases the fluidity of intercellular membranes of stratum corneum: Correlation with water permeability, elastic, and electrical resistance properties. J. Investig. Dermatol. 1996, 106, 1058–1063. [Google Scholar] [CrossRef]
- Campbell, S.D.; Kraning, K.K.; Schibli, E.G.; Momii, S.T. Hydration characteristics and electrical resistivity of stratum corneum using a noninvasive four-point microelectrode method. J. Investig. Dermatol. 1977, 69, 290–295. [Google Scholar] [CrossRef]
- Yoo, H.-J.; Hoof, C.V. Bio-Medical CMOS ICs; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Björklund, S.; Ruzgas, T.; Nowacka, A.; Dahi, I.; Topgaard, D.; Sparr, E.; Engblom, J. Skin Membrane Electrical Impedance Properties under the Influence of a Varying Water Gradient. Biophys. J. 2013, 104, 2639–2650. [Google Scholar] [CrossRef]
- Murphy, B.B.; Scheid, B.H.; Hendricks, Q.; Apollo, N.V.; Litt, B.; Vitale, F. Time Evolution of the Skin–Electrode Interface Impedance under Different Skin Treatments. Sensors 2021, 21, 5210. [Google Scholar] [CrossRef]
- Li, G.; Wang, S.; Duan, Y.Y. Towards gel-free electrodes: A systematic study of electrode-skin impedance. Sens. Actuators B Chem. 2017, 241, 1244–1255. [Google Scholar] [CrossRef]
- Kowalski, E.; Catelli, D.S.; Lamontagne, M. Comparing the Accuracy of Visual and Computerized Onset Detection Methods on Simulated Electromyography Signals with Varying Signal-to-Noise Ratios. J. Funct. Morphol. Kinesiol. 2021, 6, 70. [Google Scholar] [CrossRef] [PubMed]
- Rosell, J.; Colominas, J.; Riu, P.; Pallas-Areny, R.; Webster, J.G. Skin impedance from 1 Hz to 1 MHz. IEEE Trans. Biomed. Eng. 1988, 35, 649–651. [Google Scholar] [CrossRef] [PubMed]
- Goyal, K.; Borkholder, D.A.; Day, S.W. Dependence of Skin-Electrode Contact Impedance on Material and Skin Hydration. Sensors 2022, 22, 8510. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, A.S.P.; Noites, A.; Vilarinho, R.; Santos, R. Long-Term Electrode–Skin Impedance Variation for Electromyographic Measurements. Sensors 2023, 23, 8582. https://doi.org/10.3390/s23208582
Sousa ASP, Noites A, Vilarinho R, Santos R. Long-Term Electrode–Skin Impedance Variation for Electromyographic Measurements. Sensors. 2023; 23(20):8582. https://doi.org/10.3390/s23208582
Chicago/Turabian StyleSousa, Andreia S. P., Andreia Noites, Rui Vilarinho, and Rubim Santos. 2023. "Long-Term Electrode–Skin Impedance Variation for Electromyographic Measurements" Sensors 23, no. 20: 8582. https://doi.org/10.3390/s23208582
APA StyleSousa, A. S. P., Noites, A., Vilarinho, R., & Santos, R. (2023). Long-Term Electrode–Skin Impedance Variation for Electromyographic Measurements. Sensors, 23(20), 8582. https://doi.org/10.3390/s23208582