Stationary Explosive Trace Detection System Using Differential Ion Mobility Spectrometry (DMS)
Abstract
:1. Introduction
2. Materials and Methods
2.1. DMS Spectrometer’s Principle
2.2. The Gate
- The hands (W1, W5);
- Around the pockets (W2, W6);
- The shoes (W4, W8).
2.3. Sample Preparation
2.4. Gas System of DMS1 and DMS2 Spectrometer
2.4.1. Semi-Permeable Membrane Gas System DMS1
2.4.2. Gas System without a Semi-Permeable Membrane (DMS2)
- Detector temperature: 45 °C;
- Compensating field strength: from −60 V to +15 V;
- Gas flow rate through the detector: 4.0 L/min;
- Carrier gas: purified dry air;
- Separating field strength range: from 400 V to 1700 V;
- Quassi retengular wave, duty factor 27%, frequency 2 MHz;
- Ionization source: radioactive 1.9 GBq 63Ni.
- Chamber passage channel dimensions: 5 mm × 0.635 mm;
- Length of the control electrode (HV): at least 25 mm;
- Chamber heated with heating resistors;
- The membrane was made of polydimethylsiloxane (PDMS) in the form of a circle 30 mm in diameter and 20 µm thick. PDMS was applied directly to a metal foil with 5 mm diameter holes;
- The chamber is made of ceramic substrates based on thick-layer technology. The distance between the DMS electrode plates is 0.625 mm, and the length of the working electrode is 25 mm. The length of the DMS chamber is 50 mm (with air inlet and outlet).
3. Results
- SV 1200 V, positive polarity—peak positions, CV voltage;
- SV 1200 V, negative polarization—peak positions, CV voltage;
- SV 1450 V, positive polarization—peak positions, CV voltage;
- SV 1450 V, negative polarity—peak positions, CV voltage;
- SV 1700 V, positive polarity—peak positions, CV voltage;
- SV 1700 V, negative polarity—peak positions, CV voltage.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- To, K.C.; Ben-Jaber, S.; Parkin, I.P. Recent Developments in the Field of Explosive Trace Detection. ACS Nano 2020, 14, 10804–10833. [Google Scholar] [CrossRef] [PubMed]
- Bielecki, Z.; Janucki, J.; Kawalec, A.; Mikołajczyk, J.; Pałka, N.; Pasternak, M.; Pustelny, T.; Stacewicz, T.; Wojtas, J. Sensors and systems for the detection of explosive devices—An overview. Metrol. Meas. Syst. 2012, 1, 3–28. [Google Scholar] [CrossRef]
- Mokalled, L.; Al-husseini, M.; Kabalan, K.Y.; El-hajj, A. Sensor Review for Trace Detection of Explosives. Int. J. Sci. Eng. Res. 2014, 5, 337–350. [Google Scholar]
- Wang, C.; Huang, H.; Bunes, R.B.; Wu, N.; Xu, M.; Yang, X.; Yu, L.; Zang, L. Trace detection of RDX, HMX and PETN explosives using a fluorescence spot sensor. Sci. Rep. 2016, 6, 25015–25023. [Google Scholar] [CrossRef] [PubMed]
- DeBono, R.; Lareau, R.T. Trace detection of explosives by ion mobility spectrometry. In Counterterrorist Detection Techniques of Explosives; Elsevier: Amsterdam, The Netherlands, 2022; pp. 163–234. [Google Scholar]
- Rasanen, R.M.; Nousiainen, M.; Perakorpi, K.; Sillanpaa, M.; Polari, L.; Anttalainen, O.; Utriainen, M. Determination of gas phase triacetone triperoxide with aspiration ion mobility spectrometry and gas chromatography–mass spectrometry. Anal. Chim. Acta 2008, 623, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Marr, A.J.; Groves, D.M. Ion mobility spectrometry of peroxide explosives TATP and HMTD. Int. J. Ion Mobil. Spectrom. 2003, 6, 59–61. [Google Scholar]
- Jiang, D.-D.; Peng, L.-Y.; Zhou, Q.-H.; Chen, C.; Liu, J.-W.; Wang, S.; Li, H.-Y. Quantitative detection of hexamethylene triperoxide diamine in complex matrix using ion mobility spectrometer by dopart-assisted photoionization ion mobility spectrometry. Chin. J. Anal. Chem. 2016, 44, 1671–1678. [Google Scholar] [CrossRef]
- Schulte-Ladbeck, R.; Vogel, M.; Karst, U. Recent methods for the determination of peroxide-based explosives. Anal. Bioanal. Chem. 2006, 386, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Klapec, D.J.; Czarnopys, G.; Pannuto, J. Interpol review of the analysis and detection of explosives and explosives residues. Forensic Sci. Int. Synerg. 2023, 6, 100298. [Google Scholar] [CrossRef] [PubMed]
- Buryakov, I.A. Detection of explosives by ion mobility spectrometry. J. Anal. Chem. 2011, 66, 674–694. [Google Scholar] [CrossRef]
- Hagan, N.; Goldberg, I.; Graichen, A.; Jean, A.S.; Wu, C.; Lawrence, D.; Demirev, P. Ion mobility spectrometry-high resolution LTQ-Orbitrap mass spectrometry for analysis of homemade explosives. Am. Soc. Mass Spectrom. 2017, 28, 1531–1539. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Tang, Y.; Shi, A.; Bao, L.; Shen, Y.; Shen, R.; Ye, Y. Recent developments in spectroscopic techniques for the detection of explosives. Materials 2018, 11, 1364. [Google Scholar] [CrossRef] [PubMed]
- Oxley, J.C.; Smith, J.L.; Kirschenbaum, L.J.; Marimganti, S.; Vadlamannati, S. Detection of explosives in hair using ion mobility spectrometry. J. Forensic. Sci. 2008, 53, 690–693. [Google Scholar] [CrossRef] [PubMed]
- Marshall, M.; Oxley, J.C. Aspects of Explosives Detection, 1st ed.; Elsevier: Oxford, UK, 2009. [Google Scholar]
- Sorribes-Soriano, A.; De la Guardia, M.; Esteve-Turrillas, F.A.; Armenta, S. Trace analysis by ion mobility spectrometry: From conventional to smart sample preconcentration methods. A review. Anal. Chim. Acta 2018, 1026, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Moura, P.C.; Vassilenko, V. Contemporary ion mobility spectrometry applications and future trends towards environmental, health and food research: A review. Int. J. Ion Mobil. Spectrom. 2023, 486, 17012–117039. [Google Scholar] [CrossRef]
- Sabre 5000. Available online: https://www.cbrnetechindex.com/p/3526/Smiths-Detection-Inc/Sabre-5000 (accessed on 12 September 2023).
- IONSCAN 600: Portable explosives and narcotics trace detector. Available online: https://www.smithsdetection.com/products/ionscan-600/ (accessed on 12 September 2023).
- Kolakowski, B.M.; Mester, Z. Review of applications of high-field asymmetric waveform ion mobility spectrometry (FAIMS) and differential mobility spectrometry (DMS). Analyst 2007, 132, 842–864. [Google Scholar] [CrossRef] [PubMed]
- Rapiscan Systems. Available online: https://www.rapiscansystems.com/en/products/entryscan (accessed on 6 February 2023).
- Fatah, A.A.; Arcilesi, R.D.; McClintock, J.A.; Lattin, C.H.; Helinski, M.; Hutchings, M. Guide for the Selection of Explosives Detection and Blast Mitigation Equipment for Emergency First Responders. 2008. Available online: https://www.nist.gov/system/files/documents/oles/105-07_32812-ExploxivesGuideFinal5-12-08.pdf (accessed on 29 April 2023).
- Dodds, J.N.; Baker, E.S. Ion mobility spectrometry: Fundamental concepts, instrumentation, applications, and the road ahead. J. Am. Soc. Mass Spectrom. 2019, 30, 2185–2195. [Google Scholar] [CrossRef] [PubMed]
- Eiceman, G.A.; Schmidt, H.; Cagan, A.A. Explosives detection using differential mobility spectrometry. In Counterterrorist Detection Techniques of Explosives, 1st ed.; Yinon, J., Ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2007; pp. 61–90. [Google Scholar]
- Pavlačka, M.; Bajerová, P.; Kortánková, K.; Bláha, J.; Zástěra, M.; Mázl, R.; Ventura, K. Analysis of explosives using differential mobility spectrometry. Int. J. Ion Mobil. Spec. 2016, 19, 31–39. [Google Scholar] [CrossRef]
- Shvartsburg, A.A. Differential Ion Mobility Spectrometry: Nonlinear Ion Transport and Fundamentals of FAIMS, 1st ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Maziejuk, M.; Szyposzyńska, M.; Spławska, A.; Wiśnik-Sawka, M.; Ceremuga, M. Detection of Triacetone Triperoxide (TATP) and Hexamethylene Triperoxide Diamine (HMTD) from the Gas Phase with Differential Ion Mobility Spectrometry (DMS). Sensors 2021, 21, 4545. [Google Scholar] [CrossRef] [PubMed]
Substance | SV [V] | Positive Ion | CV [V] |
---|---|---|---|
4NT | 1700 | Monomer | −7.5 |
Dimer | −3.1 | ||
NM | 1450 | Monomer | −10.7 |
Dimer | - | ||
DMDNB | 1700 | Monomer | −9.8 |
Dimer | −0.4 | ||
TATP | 1700 | Monomer | −7.5 |
Dimer | 0.4 | ||
HMTD | 1700 | Monomer | −7.7 |
Dimer | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szyposzyńska, M.; Spławska, A.; Ceremuga, M.; Kot, P.; Maziejuk, M. Stationary Explosive Trace Detection System Using Differential Ion Mobility Spectrometry (DMS). Sensors 2023, 23, 8586. https://doi.org/10.3390/s23208586
Szyposzyńska M, Spławska A, Ceremuga M, Kot P, Maziejuk M. Stationary Explosive Trace Detection System Using Differential Ion Mobility Spectrometry (DMS). Sensors. 2023; 23(20):8586. https://doi.org/10.3390/s23208586
Chicago/Turabian StyleSzyposzyńska, Monika, Aleksandra Spławska, Michał Ceremuga, Piotr Kot, and Mirosław Maziejuk. 2023. "Stationary Explosive Trace Detection System Using Differential Ion Mobility Spectrometry (DMS)" Sensors 23, no. 20: 8586. https://doi.org/10.3390/s23208586
APA StyleSzyposzyńska, M., Spławska, A., Ceremuga, M., Kot, P., & Maziejuk, M. (2023). Stationary Explosive Trace Detection System Using Differential Ion Mobility Spectrometry (DMS). Sensors, 23(20), 8586. https://doi.org/10.3390/s23208586