Belief Propagation Optimization for Lossy Compression Based on Gaussian Source
Abstract
:1. Introduction
2. System Model
3. Optimization of BP Algorithms
3.1. OMSBP Algorithm
- : The number of symbol changes of LLR in the j-th VN, i.e., the number of node information symbol changes.
- : The different times of the symbol between the LLR in the j-th VN and the input LLR, i.e., the different times of node information symbol.
3.2. DBBP Algorithm
Algorithm 1 BBP algorithm |
Input , , , , and |
Output: The encoded bit sequence for each level: |
|
3.3. OTSBP Algorithm
- The first type of VNs:
- The second type of VNs:
Algorithm 2 TSBP algorithm |
Input: , , and L |
Output: The encoded bit sequence for each level: |
|
4. Simulation Results and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Leemput, D.; Sabovic, A.; Hammoud, K.; Famaey, J.; Pollin, S.; De Poorter, E. Energy harvesting for wireless IoT use cases: A generic feasibility model and tradeoff study. IEEE Internet Things J. 2023, 10, 15025–15043. [Google Scholar] [CrossRef]
- Zheng, K.; Jia, X.; Chi, K.; Liu, X. DDPG-Based joint time and energy management in ambient backscatter-assisted hybrid underlay CRNs. IEEE Trans. Commun. 2023, 71, 441–456. [Google Scholar] [CrossRef]
- Ma, S.; Yao, H.; Mai, T.; Yang, J.; He, W.; Xue, K.; Guizani, M. Graph convolutional network aided virtual network embedding for Internet of Thing. IEEE Trans. Netw. Sci. Eng. 2023, 10, 265–274. [Google Scholar] [CrossRef]
- Wen, C.; Huang, Y.; Davidson, T.N. Efficient transceiver design for MIMO dual-function radar-communication systems. IEEE Trans. Signal Process. 2023, 71, 1786–1801. [Google Scholar] [CrossRef]
- Heidari, A.; Navimipour, N.J.; Jamali, M.A.J.; Akbarpour, S. A hybrid approach for latency and battery lifetime optimization in IoT devices through offloading and CNN learning. Sustain. Comput. Inform. Syst. 2023, 39, 100899. [Google Scholar] [CrossRef]
- Berger, I.; Gibson, J. Lossy source coding. IEEE Trans. Inf. Theory 1998, 44, 2693–2723. [Google Scholar] [CrossRef]
- Cappellari, L. Lossy source compression of non-uniform binary sources using GQ-LDGM codes. In Proceedings of the IEEE Information Theory Workshop, Dublin, Ireland, 30 August–3 September 2010; pp. 1–5. [Google Scholar]
- Wainwright, M.; Maneva, E.; Martinian, E. Lossy source compression using low-density generator matrix codes: Analysis and algorithms. IEEE Trans. Inf. Theory 2010, 56, 1351–1368. [Google Scholar] [CrossRef]
- Aref, V.; Macris, N.; Urbanke, R.; Vuffray, M. Lossy source coding via spatially coupled LDGM ensembles. In Proceedings of the 2012 IEEE International Symposium on Information Theory Proceedings, Cambridge, MA, USA, 1–6 July 2012; pp. 373–377. [Google Scholar]
- Gupta, A.; Verdu, S. Operational duality between lossy compression and channel coding: Channel decoders as lossy compressors. In Proceedings of the Information Theory and Applications Workshop, La Jolla, CA, USA, 8–13 February 2009; pp. 119–123. [Google Scholar]
- Golmohammadi, A.; Mitchell, D.; Kliewer, J.; Costello, D. Encoding of spatially coupled LDGM codes for lossy source compression. IEEE Trans. Commun. 2018, 66, 5691–5703. [Google Scholar] [CrossRef]
- Matsunaga, Y.; Yamamoto, H. A coding theorem for lossy data compression by LDPC codes. IEEE Trans. Inf. Theory 2003, 49, 2225–2229. [Google Scholar] [CrossRef]
- Chen, P.; Shi, L.; Fang, Y.; Lau, F.C.M.; Cheng, J. Rate-diverse multiple access over Gaussian channels. IEEE Trans. Wire. Commun. 2023, 22, 5399–5413. [Google Scholar] [CrossRef]
- Fang, Y.; Zhuo, J.; Ma, H.; Mumtaz, S.; Li, Y. Design and analysis of a new index-modulation-aided DCSK system with frequency-and-time resources. IEEE Trans. Veh. Technol. 2023, 72, 7411–7425. [Google Scholar] [CrossRef]
- Divsalar, D.; Dolinar, S.; Jones, C.R.; Andrews, K. Capacity-approaching protograph codes. IEEE J. Select. Areas Commun. 2003, 27, 876–888. [Google Scholar] [CrossRef]
- Song, D.; Ren, J.; Wang, L.; Chen, G. Gaussian source coding based on P-LDPC code. IEEE Trans. Commun. 2023, 71, 1970–1981. [Google Scholar] [CrossRef]
- Deng, H.; Song, D.; Miao, M.; Wang, L. Design of lossy compression of the Gaussian source with protograph LDPC codes. In Proceedings of the 2021 15th International Conference on Signal Processing and Communication Systems (ICSPCS), Sydney, Australia, 13–15 December 2021; pp. 1–6. [Google Scholar]
- Ren, J.; Song, D.; Wu, H.; Wang, L. Lossy P-LDPC codes for compressing general sources using neural networks. Entropy 2023, 25, 252. [Google Scholar] [CrossRef] [PubMed]
- Filler, T.; Fridrich, J. Binary quantization using belief propagation with decimation over factor graphs of LDGM codes. arXiv 2007, arXiv:0710.0192. [Google Scholar]
- Braunstein, A.; Kayhan, F.; Zecchina, R. Efficient LDPC codes over GF(q) for lossy data compression. In Proceedings of the 2009 IEEE International Symposium on Information Theory, Seoul, Repulic of Korea, 28 June–3 July 2009; pp. 1978–1982. [Google Scholar]
- Honda, J.; Yamamoto, H. Variable length lossy coding using an LDPC code. IEEE Trans. Inf. Theory 2014, 60, 762–775. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Wu, H.; Liu, S. Performance of lossy P-LDPC codes over GF(2). In Proceedings of the International Conference on Signal Processing and Communication Systems, Adelaide, SA, Australia, 14–16 December 2020; pp. 1–5. [Google Scholar]
- Fang, Y.; Zhang, G.; Cai, G.; Lau, F.C.M.; Chen, P.; Han, G. Root-protograph-based BICM-ID: A reliable and efficient transmission solution for block-fading channels. IEEE Trans. Commun. 2019, 67, 5921–5939. [Google Scholar] [CrossRef]
- Chen, P.; Xie, Z.; Fang, Y.; Chen, Z.; Mumtaz, S.; Rodrigues, J.J.P.C. Physical-layer network coding: An efficient technique for wireless communications. IEEE Netw. 2020, 34, 270–276. [Google Scholar] [CrossRef]
- Song, D.; Wang, L.; Chen, p. Mesh model-based merging method for DP-LDPC code pair. IEEE Trans. Commun. 2023, 71, 1296–1308. [Google Scholar] [CrossRef]
- Song, D.; Wang, L.; Xu, Z.; Chen, G. Joint code rate compatible design of DP-LDPC code pairs for joint source channel coding over implant-to-external channel. IEEE Trans. Wirel. Commun. 2022, 21, 5526–5540. [Google Scholar] [CrossRef]
- Song, D.; Ren, J.; Wang, L.; Chen, G. Designing a common DP-LDPC code pair for variable on-body channels. IEEE Trans. Wirel. Commun. 2022, 21, 9596–9609. [Google Scholar] [CrossRef]
- Dai, L.; Fang, Y.; Guan, Y.L.; Guizani, M. Design of protograph LDPC-coded MIMO-VLC systems with generalized spatial modulation. China Commun. 2023. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, S. A two-stage decoding algorithm to lower the error-floors for LDPC codes. IEEE Commun. Lett. 2015, 19, 517–520. [Google Scholar] [CrossRef]
- Amiri, B.; Kliewer, J.; Dolecek, L. Analysis and enumeration of absorbing sets for non-binary graph-based codes. IEEE Trans. Commun. 2015, 2, 398–409. [Google Scholar]
- Martinia, E.; Yedidia, J. Iterative quantization using codes on graphs. arXiv 2004, arXiv:cs/0408008. [Google Scholar]
- Aref, V.; Macris, N.; Vuffray, M. Approaching the rate-distortion limit with spatial coupling, belief propagation, and decimation. IEEE Trans. Inf. Theory 2015, 61, 3954–3979. [Google Scholar] [CrossRef]
- Miyake, S.; Muramatsu, J. A coding theorem for lossy data compression by LDPC codes. In Proceedings of the IEEE International Symposium on Information Theory, Nice, France, 30 June–5 July 2002; pp. 1106–1110. [Google Scholar]
- Han, Y.; Ryan, W. Low-floor decoders for LDPC codes. IEEE Trans. Commun. 2015, 57, 1663–1673. [Google Scholar] [CrossRef]
- Shin, B.; Park, H.; No, J.; Chung, H. Multi-stage decoding scheme with post-processing for LDPC codes to lower the error floors. IEICE Trans. Commun. 2011, 94, 2375–2377. [Google Scholar] [CrossRef]
- Kang, J.; Huang, Q.; Lin, S.; Abdel-Ghaffar, K. An iterative decoding algorithm with backtracking to lower the error-floors of LDPC codes. IEEE Trans. Commun. 2011, 59, 64–73. [Google Scholar] [CrossRef]
Iteration Numbers | BP Algorithm | OMSBP Algorithm | DBBP Algorithm | OTSBP Algorithm |
---|---|---|---|---|
10 | 36 | 4 | 2 | 0 |
20 | 35 | 3 | 2 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, H.; Song, D.; Xu, Z.; Sun, Y.; Wang, L. Belief Propagation Optimization for Lossy Compression Based on Gaussian Source. Sensors 2023, 23, 8805. https://doi.org/10.3390/s23218805
Deng H, Song D, Xu Z, Sun Y, Wang L. Belief Propagation Optimization for Lossy Compression Based on Gaussian Source. Sensors. 2023; 23(21):8805. https://doi.org/10.3390/s23218805
Chicago/Turabian StyleDeng, Huan, Dan Song, Zhiping Xu, Yanglong Sun, and Lin Wang. 2023. "Belief Propagation Optimization for Lossy Compression Based on Gaussian Source" Sensors 23, no. 21: 8805. https://doi.org/10.3390/s23218805
APA StyleDeng, H., Song, D., Xu, Z., Sun, Y., & Wang, L. (2023). Belief Propagation Optimization for Lossy Compression Based on Gaussian Source. Sensors, 23(21), 8805. https://doi.org/10.3390/s23218805