Application of Biosensors in Detecting Breast Cancer Metastasis
Abstract
:1. Introduction
2. Research Methodology
3. Metastatic Breast Cancer and Related Biomarkers
3.1. Breast Cancer
3.2. Breast Cancer Metastasis
3.3. Breast Cancer Metastasis Markers Suitable as Targets of Biosensors
3.3.1. Glycoprotein
3.3.2. Nucleic Acid
3.3.3. Circulating Tumor Cells
3.3.4. Others
4. Biosensors for Detection of Metastatic Breast Cancer
4.1. Electrochemical Biosensors
4.1.1. Cyclic Voltammetry-Based Biosensors
4.1.2. Differential Pulse Voltammetry-Based Biosensors
4.1.3. Square Wave Voltammetry-Based Biosensors
4.1.4. Amperometry-Based Biosensors
4.1.5. Electrochemical Impedance Spectroscopy-Based Biosensors
4.1.6. Organic Electrochemical Transistor-Based Biosensors
4.2. Optical Biosensor
4.2.1. Surface Plasmon Resonance-Based Biosensors
4.2.2. Surface-Enhanced Raman Spectroscopy-Based Biosensors
4.2.3. Electrochemiluminescence-Based Biosensors
4.3. Microfluidic Biosensors
4.4. Others
5. Conclusions and Future Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arnold, M.; Morgan, E.; Rumgay, H.; Mafra, A.; Singh, D.; Laversanne, M.; Vignat, J.; Gralow, J.R.; Cardoso, F.; Siesling, S.; et al. Current and Future Burden of Breast Cancer: Global Statistics for 2020 and 2040. Breast 2022, 66, 15–23. [Google Scholar] [CrossRef]
- Harbeck, N.; Gnant, M. Breast Cancer. Lancet 2017, 389, 1134–1150. [Google Scholar] [CrossRef]
- Rossi, L.; Mazzara, C.; Pagani, O. Diagnosis and Treatment of Breast Cancer in Young Women. Curr. Treat. Options Oncol. 2019, 20, 86. [Google Scholar] [CrossRef]
- McDonald, E.S.; Clark, A.S.; Tchou, J.; Zhang, P.; Freedman, G.M. Clinical Diagnosis and Management of Breast Cancer. J. Nucl. Med. 2016, 57 (Suppl. S1), 9S–16S. [Google Scholar] [CrossRef]
- Pondé, N.F.; Zardavas, D.; Piccart, M. Progress in Adjuvant Systemic Therapy for Breast Cancer. Nat. Rev. Clin. Oncol. 2019, 16, 27–44. [Google Scholar] [CrossRef]
- Maric, T.; Bazhin, A.; Khodakivskyi, P.; Mikhaylov, G.; Solodnikova, E.; Yevtodiyenko, A.; Giordano Attianese, G.M.P.; Coukos, G.; Irving, M.; Joffraud, M.; et al. A Bioluminescent-Based Probe for In Vivo Non-Invasive Monitoring of Nicotinamide Riboside Uptake Reveals a Link between Metastasis and NAD+ Metabolism. Biosens. Bioelectron. 2023, 220, 114826. [Google Scholar] [CrossRef]
- Mohammadpour-Haratbar, A.; Boraei, S.B.A.; Zare, Y.; Rhee, K.Y.; Park, S.-J. Graphene-Based Electrochemical Biosensors for Breast Cancer Detection. Biosensors 2023, 13, 80. [Google Scholar] [CrossRef]
- Bollella, P.; Fusco, G.; Tortolini, C.; Sanzò, G.; Favero, G.; Gorton, L.; Antiochia, R. Beyond Graphene: Electrochemical Sensors and Biosensors for Biomarkers Detection. Biosens. Bioelectron. 2017, 89, 152–166. [Google Scholar] [CrossRef]
- Griguolo, G.; Pascual, T.; Dieci, M.V.; Guarneri, V.; Prat, A. Interaction of Host Immunity with HER2-Targeted Treatment and Tumor Heterogeneity in HER2-Positive Breast Cancer. J. Immunother. Cancer 2019, 7, 90. [Google Scholar] [CrossRef]
- Bredin, P.; Walshe, J.M.; Denduluri, N. Systemic Therapy for Metastatic HER2-Positive Breast Cancer. Semin. Oncol. 2020, 47, 259–269. [Google Scholar] [CrossRef]
- Fedele, P.; Sanna, V.; Santoro, A.N.; Iaia, M.L.; Fancellu, A. Tailoring antiHer2 Treatment Strategies in Breast Cancer and Beyond. Curr. Probl. Cancer 2022, 46, 100892. [Google Scholar] [CrossRef]
- Katsura, C.; Ogunmwonyi, I.; Kankam, H.K.; Saha, S. Breast Cancer: Presentation, Investigation and Management. Br. J. Hosp. Med. 2022, 83, 1–7. [Google Scholar] [CrossRef]
- Jin, L.; Han, B.; Siegel, E.; Cui, Y.; Giuliano, A.; Cui, X. Breast Cancer Lung Metastasis: Molecular Biology and Therapeutic Implications. Cancer Biol. Ther. 2018, 19, 858–868. [Google Scholar] [CrossRef] [PubMed]
- Kolak, A.; Kamińska, M.; Sygit, K.; Budny, A.; Surdyka, D.; Kukiełka-Budny, B.; Burdan, F. Primary and Secondary Prevention of Breast Cancer. Ann. Agric. Environ. Med. 2017, 24, 549–553. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Zhang, H.; Song, X.; Yang, Q. Metastatic Heterogeneity of Breast Cancer: Molecular Mechanism and Potential Therapeutic Targets. Semin. Cancer Biol. 2020, 60, 14–27. [Google Scholar] [CrossRef]
- Donzelli, S.; Cioce, M.; Sacconi, A.; Zanconato, F.; Daralioti, T.; Goeman, F.; Orlandi, G.; Di Martino, S.; Fazio, V.M.; Alessandrini, G.; et al. A PIK3CA-Mutant Breast Cancer Metastatic Patient-Derived Organoid Approach to Evaluate Alpelisib Treatment for Multiple Secondary Lesions. Mol. Cancer 2022, 21, 152. [Google Scholar] [CrossRef]
- Hashemi, M.; Arani, H.Z.; Orouei, S.; Fallah, S.; Ghorbani, A.; Khaledabadi, M.; Kakavand, A.; Tavakolpournegari, A.; Saebfar, H.; Heidari, H.; et al. EMT Mechanism in Breast Cancer Metastasis and Drug Resistance: Revisiting Molecular Interactions and Biological Functions. Biomed. Pharmacother. 2022, 155, 113774. [Google Scholar] [CrossRef]
- Tosello, G.; Torloni, M.R.; Mota, B.S.; Neeman, T.; Riera, R. Breast Surgery for Metastatic Breast Cancer. Cochrane Database Syst. Rev. 2018, 3, CD011276. [Google Scholar] [CrossRef]
- Klassen, O.; Schmidt, M.E.; Ulrich, C.M.; Schneeweiss, A.; Potthoff, K.; Steindorf, K.; Wiskemann, J. Muscle Strength in Breast Cancer Patients Receiving Different Treatment Regimes. J. Cachexia Sarcopenia Muscle 2017, 8, 305–316. [Google Scholar] [CrossRef]
- Moura, S.L.; Pallarès-Rusiñol, A.; Sappia, L.; Martí, M.; Pividori, M.I. The Activity of Alkaline Phosphatase in Breast Cancer Exosomes Simplifies the Biosensing Design. Biosens. Bioelectron. 2022, 198, 113826. [Google Scholar] [CrossRef]
- Choi, Y.R.; Shim, J.; Park, J.-H.; Kim, Y.-S.; Kim, M.J. Discovery of Orphan Olfactory Receptor 6M1 as a New Anticancer Target in MCF-7 Cells by a Combination of Surface Plasmon Resonance-Based and Cell-Based Systems. Sensors 2021, 21, 3468. [Google Scholar] [CrossRef]
- Nguyen, T.A.; Yin, T.-I.; Reyes, D.; Urban, G.A. Microfluidic Chip with Integrated Electrical Cell-Impedance Sensing for Monitoring Single Cancer Cell Migration in Three-Dimensional Matrixes. Anal. Chem. 2013, 85, 11068–11076. [Google Scholar] [CrossRef]
- Barzaman, K.; Karami, J.; Zarei, Z.; Hosseinzadeh, A.; Kazemi, M.H.; Moradi-Kalbolandi, S.; Safari, E.; Farahmand, L. Breast Cancer: Biology, Biomarkers, and Treatments. Int. Immunopharmacol. 2020, 84, 106535. [Google Scholar] [CrossRef]
- Zubair, M.; Wang, S.; Ali, N. Advanced Approaches to Breast Cancer Classification and Diagnosis. Front. Pharmacol. 2020, 11, 632079. [Google Scholar] [CrossRef]
- Sharifianjazi, F.; Jafari Rad, A.; Bakhtiari, A.; Niazvand, F.; Esmaeilkhanian, A.; Bazli, L.; Abniki, M.; Irani, M.; Moghanian, A. Biosensors and Nanotechnology for Cancer Diagnosis (Lung and Bronchus, Breast, Prostate, and Colon): A Systematic Review. Biomed. Mater. 2021, 17, 012002. [Google Scholar] [CrossRef]
- Ranjbari, S.; Darroudi, M.; Hatamluyi, B.; Arefinia, R.; Aghaee-Bakhtiari, S.H.; Rezayi, M.; Khazaei, M. Application of MXene in the Diagnosis and Treatment of Breast Cancer: A Critical Overview. Front. Bioeng. Biotechnol. 2022, 10, 984336. [Google Scholar] [CrossRef] [PubMed]
- Mohammadpour-Haratbar, A.; Zare, Y.; Rhee, K.Y. Electrochemical Biosensors Based on Polymer Nanocomposites for Detecting Breast Cancer: Recent Progress and Future Prospects. Adv. Colloid. Interface Sci. 2022, 309, 102795. [Google Scholar] [CrossRef] [PubMed]
- Hong, R.; Sun, H.; Li, D.; Yang, W.; Fan, K.; Liu, C.; Dong, L.; Wang, G. A Review of Biosensors for Detecting Tumor Markers in Breast Cancer. Life 2022, 12, 342. [Google Scholar] [CrossRef] [PubMed]
- McSherry, E.A.; Donatello, S.; Hopkins, A.M.; McDonnell, S. Molecular Basis of Invasion in Breast Cancer. Cell Mol. Life Sci. 2007, 64, 3201–3218. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Duan, J.-J.; Bian, X.-W.; Yu, S.-C. Triple-Negative Breast Cancer Molecular Subtyping and Treatment Progress. Breast Cancer Res. 2020, 22, 61. [Google Scholar] [CrossRef]
- Zhang, L.; Fang, C.; Xu, X.; Li, A.; Cai, Q.; Long, X. Androgen Receptor, EGFR, and BRCA1 as Biomarkers in Triple-Negative Breast Cancer: A Meta-Analysis. Biomed. Res. Int. 2015, 2015, 357485. [Google Scholar] [CrossRef] [PubMed]
- Tabor, S.; Szostakowska-Rodzos, M.; Fabisiewicz, A.; Grzybowska, E.A. How to Predict Metastasis in Luminal Breast Cancer? Current Solutions and Future Prospects. Int. J. Mol. Sci. 2020, 21, 8415. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.; Haider, A.; Rashid, S.; Al-Nabet, A.D.M.H. Paget’s “Seed and Soil” Theory of Cancer Metastasis: An Idea Whose Time Has Come. Adv. Anat. Pathol. 2019, 26, 69–74. [Google Scholar] [CrossRef]
- Ma, R.; Feng, Y.; Lin, S.; Chen, J.; Lin, H.; Liang, X.; Zheng, H.; Cai, X. Mechanisms Involved in Breast Cancer Liver Metastasis. J. Transl. Med. 2015, 13, 64. [Google Scholar] [CrossRef]
- Purkayastha, K.; Dhar, R.; Pethusamy, K.; Srivastava, T.; Shankar, A.; Rath, G.K.; Karmakar, S. The Issues and Challenges with Cancer Biomarkers. J. Cancer Res. Ther. 2023, 19, S20–S35. [Google Scholar] [CrossRef]
- Maeda, T.; Hiraki, M.; Jin, C.; Rajabi, H.; Tagde, A.; Alam, M.; Bouillez, A.; Hu, X.; Suzuki, Y.; Miyo, M.; et al. MUC1-C Induces PD-L1 and Immune Evasion in Triple-Negative Breast Cancer. Cancer Res. 2018, 78, 205–215. [Google Scholar] [CrossRef]
- Knudson, K.M.; Hicks, K.C.; Alter, S.; Schlom, J.; Gameiro, S.R. Mechanisms Involved in IL-15 Superagonist Enhancement of Anti-PD-L1 Therapy. J. Immunother. Cancer 2019, 7, 82. [Google Scholar] [CrossRef]
- Wang, W.; Xu, X.; Tian, B.; Wang, Y.; Du, L.; Sun, T.; Shi, Y.; Zhao, X.; Jing, J. The Diagnostic Value of Serum Tumor Markers CEA, CA19-9, CA125, CA15-3, and TPS in Metastatic Breast Cancer. Clin. Chim. Acta 2017, 470, 51–55. [Google Scholar] [CrossRef]
- Rack, B.; Jückstock, J.; Trapp, E.; Weissenbacher, T.; Alunni-Fabbroni, M.; Schramm, A.; Widschwendter, P.; Lato, K.; Zwingers, T.; Lorenz, R.; et al. CA27.29 as a Tumour Marker for Risk Evaluation and Therapy Monitoring in Primary Breast Cancer Patients. Tumour. Biol. 2016, 37, 13769–13775. [Google Scholar] [CrossRef]
- Can, C.; Arac, E.; Cakabay, B.; Guzel, Y. The Relationship between CEA and CA 15-3 Positivity and Metabolic and Volumetric 18F-FDG PET/CT Parameters in Preoperative Evaluation of Breast Cancer. Ann. Italy Chir. 2022, 92, 33–39. [Google Scholar]
- Kwong, A.; Shin, V.Y.; Ho, J.C.W.; Kang, E.; Nakamura, S.; Teo, S.-H.; Lee, A.S.G.; Sng, J.-H.; Ginsburg, O.M.; Kurian, A.W.; et al. Comprehensive Spectrum of BRCA1 and BRCA2 Deleterious Mutations in Breast Cancer in Asian Countries. J. Med. Genet. 2016, 53, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Cristiano, S.; Leal, A.; Phallen, J.; Fiksel, J.; Adleff, V.; Bruhm, D.C.; Jensen, S.Ø.; Medina, J.E.; Hruban, C.; White, J.R.; et al. Genome-Wide Cell-Free DNA Fragmentation in Patients with Cancer. Nature 2019, 570, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xing, Y.; Wang, X.; Hu, B.; Zhao, X.; Zhang, H.; Han, F.; Geng, N.; Wang, F.; Li, Y.; et al. PAK5 Promotes RNA Helicase DDX5 Sumoylation and miRNA-10b Processing in a Kinase-Dependent Manner in Breast Cancer. Cell Rep. 2021, 37, 110127. [Google Scholar] [CrossRef] [PubMed]
- Piasecka, D.; Braun, M.; Kordek, R.; Sadej, R.; Romanska, H. MicroRNAs in Regulation of Triple-Negative Breast Cancer Progression. J. Cancer Res. Clin. Oncol. 2018, 144, 1401–1411. [Google Scholar] [CrossRef]
- Gkountela, S.; Castro-Giner, F.; Szczerba, B.M.; Vetter, M.; Landin, J.; Scherrer, R.; Krol, I.; Scheidmann, M.C.; Beisel, C.; Stirnimann, C.U.; et al. Circulating Tumor Cell Clustering Shapes DNA Methylation to Enable Metastasis Seeding. Cell 2019, 176, 98–112.e14. [Google Scholar] [CrossRef]
- Ahn, J.C.; Teng, P.-C.; Chen, P.-J.; Posadas, E.; Tseng, H.-R.; Lu, S.C.; Yang, J.D. Detection of Circulating Tumor Cells and Their Implications as a Biomarker for Diagnosis, Prognostication, and Therapeutic Monitoring in Hepatocellular Carcinoma. Hepatology 2021, 73, 422–436. [Google Scholar] [CrossRef]
- Li, B.; Cao, Y.; Sun, M.; Feng, H. Expression, Regulation, and Function of Exosome-Derived miRNAs in Cancer Progression and Therapy. FASEB J. 2021, 35, e21916. [Google Scholar] [CrossRef]
- Yuan, X.; Qian, N.; Ling, S.; Li, Y.; Sun, W.; Li, J.; Du, R.; Zhong, G.; Liu, C.; Yu, G.; et al. Breast Cancer Exosomes Contribute to Pre-Metastatic Niche Formation and Promote Bone Metastasis of Tumor Cells. Theranostics 2021, 11, 1429–1445. [Google Scholar] [CrossRef]
- Gao, Y.; Li, X.; Zeng, C.; Liu, C.; Hao, Q.; Li, W.; Zhang, K.; Zhang, W.; Wang, S.; Zhao, H.; et al. CD63+ Cancer-Associated Fibroblasts Confer Tamoxifen Resistance to Breast Cancer Cells through Exosomal miR-22. Adv. Sci. 2020, 7, 2002518. [Google Scholar] [CrossRef]
- Van Baelen, K.; Geukens, T.; Maetens, M.; Tjan-Heijnen, V.; Lord, C.J.; Linn, S.; Bidard, F.-C.; Richard, F.; Yang, W.W.; Steele, R.E.; et al. Current and Future Diagnostic and Treatment Strategies for Patients with Invasive Lobular Breast Cancer. Ann. Oncol. 2022, 33, 769–785. [Google Scholar] [CrossRef]
- Shen, H.; Deng, W.; He, Y.; Li, X.; Song, J.; Liu, R.; Liu, H.; Yang, G.; Li, L. Ultrasensitive Aptasensor for Isolation and Detection of Circulating Tumor Cells Based on CeO2@Ir Nanorods and DNA Walker. Biosens. Bioelectron. 2020, 168, 112516. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Liu, S.; Li, X.; Yang, M. Electrochemical Detection of Circulating Tumor Cells Based on DNA Generated Electrochemical Current and Rolling Circle Amplification. Anal. Chem. 2019, 91, 11614–11619. [Google Scholar] [CrossRef] [PubMed]
- Jayanthi, V.S.P.K.S.A.; Das, A.B.; Saxena, U. Recent Advances in Biosensor Development for the Detection of Cancer Biomarkers. Biosens. Bioelectron. 2017, 91, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Gharehzadehshirazi, A.; Zarejousheghani, M.; Falahi, S.; Joseph, Y.; Rahimi, P. Biomarkers and Corresponding Biosensors for Childhood Cancer Diagnostics. Sensors 2023, 23, 1482. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Razmi, N.; Mokhtarzadeh, A.; Shadjou, N.; Mahboob, S. Aptamer Based Assay of Plated-Derived Grow Factor in Unprocessed Human Plasma Sample and MCF-7 Breast Cancer Cell Lysates Using Gold Nanoparticle Supported α-Cyclodextrin. Int. J. Biol. Macromol. 2018, 108, 69–80. [Google Scholar] [CrossRef]
- Muñoz-San Martín, C.; Gamella, M.; Pedrero, M.; Montero-Calle, A.; Barderas, R.; Campuzano, S.; Pingarrón, J.M. Magnetic Beads-Based Electrochemical Immunosensing of HIF-1α, a Biomarker of Tumoral Hypoxia. Sens. Actuators B Chem. 2020, 307, 127623. [Google Scholar] [CrossRef]
- Nikshoar, M.S.; Khosravi, S.; Jahangiri, M.; Zandi, A.; Miripour, Z.S.; Bonakdar, S.; Abdolahad, M. Distinguishment of Populated Metastatic Cancer Cells from Primary Ones Based on Their Invasion to Endothelial Barrier by Biosensor Arrays Fabricated on Nanoroughened Poly(Methyl Methacrylate). Biosens. Bioelectron. 2018, 118, 51–57. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, Y.; Tang, S.; Chen, S.; Zou, F.; Yuan, H.; Jiao, J. Multivalent Aptamer Nanoscaffold Cytosensor for Glioma Circulating Tumor Cells during Epithelial–Mesenchymal Transition. Biosens. Bioelectron. 2023, 226, 115140. [Google Scholar] [CrossRef]
- Costentin, C.; Fortage, J.; Collomb, M.-N. Electrophotocatalysis: Cyclic Voltammetry as an Analytical Tool. J. Phys. Chem. Lett. 2020, 11, 6097–6104. [Google Scholar] [CrossRef]
- Kamyabi, M.A.; Kazemi, D.; Bikas, R.; Soleymani-Bonoti, F. Investigation of the Hg(II) Biosorption from Wastewater by Using Garlic Plant and Differential Pulse Voltammetry. Anal. Biochem. 2021, 627, 114263. [Google Scholar] [CrossRef]
- Sadeghi, M.; Kashanian, S.; Naghib, S.M.; Arkan, E. A High-Performance Electrochemical Aptasensor Based on Graphene-Decorated Rhodium Nanoparticles to Detect HER2-ECD Oncomarker in Liquid Biopsy. Sci. Rep. 2022, 12, 3299. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, M.; Kashanian, S.; Naghib, S.M.; Askari, E.; Haghiralsadat, F.; Tofighi, D. A Highly Sensitive Nanobiosensor Based on Aptamer-Conjugated Graphene-Decorated Rhodium Nanoparticles for Detection of HER2-Positive Circulating Tumor Cells. Nanotechnol. Rev. 2022, 11, 793–810. [Google Scholar] [CrossRef]
- Kokoskarova, P.; Stojanov, L.; Najkov, K.; Ristovska, N.; Ruskovska, T.; Skrzypek, S.; Mirceski, V. Square-Wave Voltammetry of Human Blood Serum. Sci. Rep. 2023, 13, 8485. [Google Scholar] [CrossRef] [PubMed]
- Böhm, D.; Koall, M.; Matysik, F.-M. Combining Amperometry and Mass Spectrometry as a Dual Detection Approach for Capillary Electrophoresis. Electrophoresis 2023, 44, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Brett, C.M.A. Electrochemical Impedance Spectroscopy in the Characterisation and Application of Modified Electrodes for Electrochemical Sensors and Biosensors. Molecules 2022, 27, 1497. [Google Scholar] [CrossRef]
- Bi, L.; Teng, Y.; Baghayeri, M.; Bao, J. Employing Pd Nanoparticles Decorated on Halloysite Nanotube/Carbon Composite for Electrochemical Aptasensing of HER2 in Breast Cancer Patients. Environ. Res. 2023, 237, 117030. [Google Scholar] [CrossRef]
- Rostamabadi, P.F.; Heydari-Bafrooei, E. Impedimetric Aptasensing of the Breast Cancer Biomarker HER2 Using a Glassy Carbon Electrode Modified with Gold Nanoparticles in a Composite Consisting of Electrochemically Reduced Graphene Oxide and Single-Walled Carbon Nanotubes. Microchim. Acta 2019, 186, 495. [Google Scholar] [CrossRef]
- Lieberth, K.; Romele, P.; Torricelli, F.; Koutsouras, D.A.; Brückner, M.; Mailänder, V.; Gkoupidenis, P.; Blom, P.W.M. Current-Driven Organic Electrochemical Transistors for Monitoring Cell Layer Integrity with Enhanced Sensitivity. Adv. Healthc. Mater. 2021, 10, e2100845. [Google Scholar] [CrossRef]
- Vizzini, P.; Beltrame, E.; Coppedè, N.; Vurro, F.; Andreatta, F.; Torelli, E.; Manzano, M. Detection of Listeria Monocytogenes in Foods with a Textile Organic Electrochemical Transistor Biosensor. Appl. Microbiol. Biotechnol. 2023, 107, 3789–3800. [Google Scholar] [CrossRef]
- Chen, L.; Fu, Y.; Wang, N.; Yang, A.; Li, Y.; Wu, J.; Ju, H.; Yan, F. Organic Electrochemical Transistors for the Detection of Cell Surface Glycans. ACS Appl. Mater. Interfaces 2018, 10, 18470–18477. [Google Scholar] [CrossRef]
- Peng, Y.; Pan, Y.; Han, Y.; Sun, Z.; Jalalah, M.; Al-Assiri, M.S.; Harraz, F.A.; Yang, J.; Li, G. Direct Analysis of Rare Circulating Tumor Cells in Whole Blood Based on Their Controlled Capture and Release on Electrode Surface. Anal. Chem. 2020, 92, 13478–13484. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, J. Optical Biosensors: An Exhaustive and Comprehensive Review. Analyst 2020, 145, 1605–1628. [Google Scholar] [CrossRef] [PubMed]
- Loyez, M.; Hassan, E.M.; Lobry, M.; Liu, F.; Caucheteur, C.; Wattiez, R.; DeRosa, M.C.; Willmore, W.G.; Albert, J. Rapid Detection of Circulating Breast Cancer Cells Using a Multiresonant Optical Fiber Aptasensor with Plasmonic Amplification. ACS Sens. 2020, 5, 454–463. [Google Scholar] [CrossRef]
- Zhu, S.; Xie, Z.; Chen, Y.; Liu, S.; Kwan, Y.-W.; Zeng, S.; Yuan, W.; Ho, H.-P. Real-Time Detection of Circulating Tumor Cells in Bloodstream Using Plasmonic Fiber Sensors. Biosensors 2022, 12, 968. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.; Parajuli, P.; Podila, R. Rapid Detection of Urokinase Plasminogen Activator Using Flexible Paper-Based Graphene-Gold Platform. Biointerphases 2020, 15, 011004. [Google Scholar] [CrossRef] [PubMed]
- Jibin, K.; Babu, V.R.; Jayasree, R.S. Graphene–Gold Nanohybrid-Based Surface-Enhanced Raman Scattering Platform on a Portable Easy-to-Use Centrifugal Prototype for Liquid Biopsy Detection of Circulating Breast Cancer Cells. ACS Sustain. Chem. Eng. 2021, 9, 15496–15505. [Google Scholar] [CrossRef]
- Nasrollahpour, H.; Mahdipour, M.; Isildak, I.; Rashidi, M.-R.; Naseri, A.; Khalilzadeh, B. A Highly Sensitive Electrochemiluminescence Cytosensor for Detection of SKBR-3 Cells as Metastatic Breast Cancer Cell Line: A Constructive Phase in Early and Precise Diagnosis. Biosens. Bioelectron. 2021, 178, 113023. [Google Scholar] [CrossRef]
- Das, S.; Devireddy, R.; Gartia, M.R. Surface Plasmon Resonance (SPR) Sensor for Cancer Biomarker Detection. Biosensors 2023, 13, 396. [Google Scholar] [CrossRef]
- Lin, T.; Song, Y.-L.; Liao, J.; Liu, F.; Zeng, T.-T. Applications of Surface-Enhanced Raman Spectroscopy in Detection Fields. Nanomedicine 2020, 15, 2971–2989. [Google Scholar] [CrossRef]
- Jalili, R.; Chenaghlou, S.; Khataee, A.; Khalilzadeh, B.; Rashidi, M.-R. An Electrochemiluminescence Biosensor for the Detection of Alzheimer’s Tau Protein Based on Gold Nanostar Decorated Carbon Nitride Nanosheets. Molecules 2022, 27, 431. [Google Scholar] [CrossRef]
- Caballero, D.; Abreu, C.M.; Reis, R.L.; Kundu, S.C. Emerging Microfluidic and Biosensor Technologies for Improved Cancer Theranostics. Adv. Exp. Med. Biol. 2022, 1379, 461–495. [Google Scholar] [CrossRef] [PubMed]
- Alsabbagh, K.; Hornung, T.; Voigt, A.; Sadir, S.; Rajabi, T.; Länge, K. Microfluidic Impedance Biosensor Chips Using Sensing Layers Based on DNA-Based Self-Assembled Monolayers for Label-Free Detection of Proteins. Biosensors 2021, 11, 80. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Kang, B.; Son, H.Y.; Mun, B.; Huh, Y.-M.; Rho, H.W.; Kang, T.; Moon, J.; Lee, J.-J.; Seo, S.B.; et al. Microfluidic Device for One-Step Detection of Breast Cancer-Derived Exosomal mRNA in Blood Using Signal-Amplifiable 3D Nanostructure. Biosens. Bioelectron. 2022, 197, 113753. [Google Scholar] [CrossRef] [PubMed]
- Burinaru, T.A.; Adiaconiţă, B.; Avram, M.; Preda, P.; Enciu, A.-M.; Chiriac, E.; Mărculescu, C.; Constantin, T.; Militaru, M. Electrochemical Impedance Spectroscopy Based Microfluidic Biosensor for the Detection of Circulating Tumor Cells. Mater. Today Commun. 2022, 32, 104016. [Google Scholar] [CrossRef]
- Yılmaz, M.; Bakhshpour, M.; Göktürk, I.; Pişkin, A.K.; Denizli, A. Quartz Crystal Microbalance (QCM) Based Biosensor Functionalized by HER2/Neu Antibody for Breast Cancer Cell Detection. Chemosensors 2021, 9, 80. [Google Scholar] [CrossRef]
- Fang, W.; Lv, X.; Ma, Z.; Liu, J.; Pei, W.; Geng, Z. A Flexible Terahertz Metamaterial Biosensor for Cancer Cell Growth and Migration Detection. Micromachines 2022, 13, 631. [Google Scholar] [CrossRef]
- Migoń, D.; Wasilewski, T.; Suchy, D. Application of QCM in Peptide and Protein-Based Drug Product Development. Molecules 2020, 25, 3950. [Google Scholar] [CrossRef]
- Bunroddith, K.; Viseshakul, N.; Chansiri, K.; Lieberzeit, P. QCM-Based Rapid Detection of PCR Amplification Products of Ehrlichia Canis. Anal. Chim. Acta 2018, 1001, 106–111. [Google Scholar] [CrossRef]
- Ali, A.; Mitra, A.; Aïssa, B. Metamaterials and Metasurfaces: A Review from the Perspectives of Materials, Mechanisms and Advanced Metadevices. Nanomaterials 2022, 12, 1027. [Google Scholar] [CrossRef]
- Bossart, A.; Dykstra, D.M.J.; van der Laan, J.; Coulais, C. Oligomodal Metamaterials with Multifunctional Mechanics. Proc. Natl. Acad. Sci. USA 2021, 118, e2018610118. [Google Scholar] [CrossRef]
- Maslova, E.E.; Limonov, M.F.; Rybin, M.V. Dielectric Metamaterials with Electric Response. Opt. Lett. 2018, 43, 5516–5519. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Lee, Y.K.; Lee, S.-H.; Kwak, J.; Song, H.S.; Seo, M. Detection and Discrimination of SARS-CoV-2 Spike Protein-Derived Peptides Using THz Metamaterials. Biosens. Bioelectron. 2022, 202, 113981. [Google Scholar] [CrossRef] [PubMed]
- Zhan, X.; Yang, S.; Huang, G.; Yang, L.; Zhang, Y.; Tian, H.; Xie, F.; Lamy de la Chapelle, M.; Yang, X.; Fu, W. Streptavidin-Functionalized Terahertz Metamaterials for Attomolar Exosomal microRNA Assay in Pancreatic Cancer Based on Duplex-Specific Nuclease-Triggered Rolling Circle Amplification. Biosens. Bioelectron. 2021, 188, 113314. [Google Scholar] [CrossRef] [PubMed]
- Mauro, N.; Utzeri, M.A.; Varvarà, P.; Cavallaro, G. Functionalization of Metal and Carbon Nanoparticles with Potential in Cancer Theranostics. Molecules 2021, 26, 3085. [Google Scholar] [CrossRef]
Classification | Typical Biomarkers | Ref. |
---|---|---|
Glycoprotein | MUC 1; CEA; CA15-3; TPS; CA 27.29 | [36,37,38,39,40] |
Nucleic acid | HER2 gene; BRCA1; BRCA2; EGFR; PIK3CA; miR-10b; miR-200 family (miR-200a, miR-200b, miR-200c, miR-141, and miR-429) | [41,42,43,44] |
Circulating tumor cells | CSV; N-Cadherin; Twist; EpCAM; CK; E-Cadherin | [45,46] |
Others | Exosomes transfer PTEN-targeting miRNA | [47,48,49] |
Target Biomarker | Bare Electrode | Electrode Modification | Detection | LOD | LR | Year | Ref. |
---|---|---|---|---|---|---|---|
Mannose | Au | Carbon nanotubes. | Fluorescence | 10 cells μL−1 | None | 2018 | [70] |
Elevation platelet-derived growth factor (PDGF-BB) | Au | One-step template (α-cyclodextrin)-assistant green electrodeposition method. | SWV and CV | 0.52 nM/328 cells mL−1 | 0.52–1.52 nM/328 to 593 cells mL−1 | 2018 | [55] |
MCF7 and MDA-MB231 | Au | Nanoroughened PMMA substrate. | EIS | None | None | 2018 | [57] |
EpCAM of MCF-7 | Au | Antiepithelial cell adhesion molecule (EpCAM) antibody-modified magnetic nanospheres. | CV and SWV | 1 cells mL−1 | 5 × 100 to 3 × 104 cells mL−1 | 2019 | [52] |
Hypoxia-inducible factor-1 alpha (HIF-1α) | Carbon | The whole suspension of MBs modified with the sandwich immunocomplexes were pipetted on the working electrode surface of the SPCE. | Amperometric | 76 pg mL−1 | None | 2020 | [56] |
Tetrahedral DNA nanostructures | Au | Tetrahedral DNA nanostructures labeled with thiol are immobilized onto the surface of SPGE by Au–S bonds. | CV | 3 cells mL−1 | None | 2020 | [71] |
MUC1-targeting aptamer | CeO2@Ir nanorods | Binding of biotin- and carboxyl-modified D-RNA to magnetic beads (MBs) and Ce@IrNRs. | DPV | 1 cell mL−1 | 2 to 2 × 106 cells mL−1 | 2020 | [51] |
EpCAM; CSV | Au | Self-assembly product, TCEP, and DNA fixation buffer were dropped onto the electrode. | EIS | 6 cells mL−1 | None | 2023 | [58] |
HER2-ECD oncomarker | Graphite electrode | Reduced graphene oxide nano-sheets (rGONs) and rhodium nanoparticles (Rh-NPs) on the graphite electrode (GE) surface. | DPV | 0.667 ng/m | Dynamic range of 10.0–500.0 ng/mL | 2022 | [61] |
HER2 | Graphite | The hybrid nanocomposite established by the coupling of reduced graphene oxide nanosheets (rGONs) and rhodium nanoparticles (Rh-NPs) on the surface of graphite electrodes. | DPV | 1.0 cell/mL | 5.0 to 10.0 × 104 cells/mL | 2022 | [62] |
HER2 | Halloysite nanotube/carbon composite | Halloysite nanotube/carbon composite decorated with Pd nanoparticles (HNT/C@Pd NPs) modifier. | EIS | 8 pg/mL | 0.03 ng/mL to 9 ng/mL | 2023 | [66] |
HER2 | Glassy carbon electrode | Glassy carbon electrode (GCE) was modified with densely packed gold nanoparticles placed on a composite consisting of electrochemically reduced graphene oxide and single-walled carbon nanotubes (ErGO-SWCNTs). | EIS | 50 fg/mL | 0.1 pg·/mL to 1 ng/mL | 2019 | [67] |
Target Biomarker | Supporting Substrate | Modification | Detection Method | LOD | LR | Ref. |
---|---|---|---|---|---|---|
mammaglobin-A | Au | Optical fiber grating sensors were functionalized using aptamer receptors. | Surface plasmon resonance (SPR) | 49 cells mL−1 | None | [73] |
EpCAM of MCF-7 | Fiber probe | Au film and EpCAM (MCF-7) antibody were deposited. | Spectrometer | ~1.4 cells uL−1 | None | [74] |
uPA (urokinase plasminogen activator) | Graphene | Modified with gold and antibodies. | Fluorescence | 100 pM | None | [75] |
EpCAM and ErbB2 of SKBR3 cells | Au | Antibody modification, Raman scattering enhancement. | SERS and fluorescence imaging | 5 cells mL−1 | None | [76] |
HER-2 of SKBR-3 | Silica | Luminol was combined with chitosan to produce a stable lumino-composite film on the electrode surface. | ECL; CV | 20 cells mL−1 | 20 to 2000 cells/mL | [77] |
Type of Sensor | Target Biomarker | Supporting Substrate | Modification | Detection | LOD | Ref. |
---|---|---|---|---|---|---|
Microfluidic biosensors | ERBB2 | None | None | Fluorescent signal | 58.3 fM | [83] |
EpCAM and CD36 of MCF-7 | Au | Functionalized with anti-EpCAM antibodies. | CV | None | [84] | |
Quartz crystal microbalance | HER2/neu | Au | Polyhydroxyethyl methacrylate nanoparticles changed the hydrophobic properties of the surface of the gold QCM chip. | QCM device | 10 cells/ml | [85] |
Terahertz metamaterial biosensor | Transform growth factor-β (TGF-β) | Silicon wafer | Au is deposited in Parylene by an electron beam and then coated with antibodies. | Fluorescent images, terahertz time domain spectroscopy. | None | [86] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Y.; Zhang, Y.; Zhou, M.; Wu, B.; Zhou, J. Application of Biosensors in Detecting Breast Cancer Metastasis. Sensors 2023, 23, 8813. https://doi.org/10.3390/s23218813
Deng Y, Zhang Y, Zhou M, Wu B, Zhou J. Application of Biosensors in Detecting Breast Cancer Metastasis. Sensors. 2023; 23(21):8813. https://doi.org/10.3390/s23218813
Chicago/Turabian StyleDeng, Yu, Yubi Zhang, Meng Zhou, Bin Wu, and Jing Zhou. 2023. "Application of Biosensors in Detecting Breast Cancer Metastasis" Sensors 23, no. 21: 8813. https://doi.org/10.3390/s23218813
APA StyleDeng, Y., Zhang, Y., Zhou, M., Wu, B., & Zhou, J. (2023). Application of Biosensors in Detecting Breast Cancer Metastasis. Sensors, 23(21), 8813. https://doi.org/10.3390/s23218813