Application of an Ultra-Low-Cost Passive Sampler for Light-Absorbing Carbon in Mongolia
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Washington Passive Sampler (WPS)
2.2. Reference Method
2.3. PurpleAir
2.4. Study Design
2.5. Data Analysis
- Precision and reproducibility of WPS and UPAS: We utilized the intraclass correlation coefficient (ICC) to determine the same-method agreement between paired duplicate WPS samples and (separately) paired duplicate UPAS samples. We also compared the precision of both methods [33]. The ICC measures how strongly the duplicate samples resemble each other; ICC = 1 means that the duplicate samples perfectly match, and therefore, the precision of the sampler is perfect/infinite. The ICC is more appropriate than R2 for understanding the consistency of duplicate measurements because the paired duplicate measurements are mathematically equivalent. (In contrast, R2 is used when the pairs have differentiation: one measurement is necessarily “x”, and the other is necessarily “y”.)
- Comparing the WPS against the gold standard: In this step, we assessed the performance of the WPS against the gold-standard method and established a calibration curve for the light-absorbing carbon relative to the elemental carbon. Deming regression (deming package in R (R version 4.1.2, R Foundation for Statistical Computing, Vienna, Austria) was used to derive the calibration curve because of the uncertainties in both the elemental carbon and the light-absorbing carbon measurements. The accuracy of the WPS was then computed as the root-mean-square error (RMSE) between the observed change in reflectance (utilizing the gold-standard method) and the predicted change in reflectance (using the WPS with the empirically determined calibration curve).
- Correlations across methods: This component involved examining the correlations among all three measurement methods for each household during each deployment period.
- Comparing WPS measurements across deployments: This component aimed to investigate potential filter-loading effects by comparing the WPS measurements across different deployment periods (i.e., across duplicate samples made using different ages of the filter and filter paper).
3. Results
3.1. Measurement Completeness
3.2. Precision of WPS and UPAS
3.3. Field Blank and Calibration Curve
3.4. PurpleAir
3.5. Darkening Rate of Fresh and Aged Filters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Household Air Pollution Attributable DALYs. World Health Organization 2019. Available online: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/household-air-pollution-attributable-dalys (accessed on 28 December 2021).
- Gakidou, E.; Afshin, A.; Abajobir, A.A.; Abate, K.H.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abdulle, A.M.; Abera, S.F.; Aboyans, V. Global, regional, and national comparative risk assessment of 84 behavioral, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1345–1422. [Google Scholar] [CrossRef]
- Bentayeb, M.; Wagner, V.; Stempfelet, M.; Zins, M.; Goldberg, M.; Pascal, M.; Larrieu, S.; Beaudeau, P.; Cassadou, S.; Eilstein, D.; et al. Association between long-term exposure to air pollution and mortality in France: A 25-year follow-up study. Environ. Int. 2015, 85, 5–14. [Google Scholar] [CrossRef]
- Smith, K.R. Indoor air pollution in developing countries: Recommendations for research. Indoor Air 2002, 12, 198–207. [Google Scholar] [CrossRef]
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; Amann, M.; Anderson, H.R.; Andrews, K.G.; Aryee, M.; et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef]
- Van Vliet, E.D.; Asante, K.; Jack, D.W.; Kinney, P.L.; Whyatt, R.M.; Chillrud, S.N.; Abokyi, L.; Zandoh, C.; Owusu-Agyei, S. Personal exposures to fine particulate matter and black carbon in households cooking with biomass fuels in rural Ghana. Environ. Res. 2013, 127, 40–48. [Google Scholar] [CrossRef]
- Bartington, S.E.; Bakolis, I.; Devakumar, D.; Kurmi, O.P.; Gulliver, J.; Chaube, G.; Manandhar, D.S.; Saville, N.M.; Costello, A.; Osrin, D.; et al. Patterns of domestic exposure to carbon monoxide and particulate matter in households using biomass fuel in Janakpur, Nepal. Environ. Pollut. 2016, 220 Pt A, 38–45. [Google Scholar] [CrossRef]
- Emmelin, A.; Wall, S. Indoor air pollution: A poverty-related cause of mortality among the children of the world. Chest 2007, 132, 1615–1623. [Google Scholar] [CrossRef]
- Kurmi, O.P.; Lam, K.B.; Ayres, J.G. Indoor air pollution and the lung in low- and medium-income countries. Eur. Respir. J. 2012, 40, 239–254. [Google Scholar] [CrossRef]
- Clark, M.L.; Peel, J.L.; Balakrishnan, K.; Breysse, P.N.; Chillrud, S.N.; Naeher, L.P.; Rodes, C.E.; Vette, A.F.; Balbus, J.M. Health and household air pollution from solid fuel use: The need for improved exposure assessment. Environ. Health Perspect. 2013, 121, 1120–1128. [Google Scholar] [CrossRef]
- Ramanathan, N.; Lukac, M.; Ahmed, T.; Kar, A.; Praparticlesveen, P.S.; Honles, T.; Leong, I.; Rehman, I.H.; Schauer, J.J.; Ramanathan, V. A cellphone-based system for large-scale monitoring of black carbon. Atmos. Environ. 2011, 45, 4481–4487. [Google Scholar] [CrossRef]
- Caubel, J.J.; Cados, T.E.; Kirchstetter, T.W. A new black carbon sensor for dense air quality monitoring networks. Sensors 2018, 18, 738. [Google Scholar] [CrossRef]
- Venkatraman Jagatha, J.; Klausnitzer, A.; Chacón-Mateos, M.; Laquai, B.; Nieuwkoop, E.; van der Mark, P.; Vogt, U.; Schneider, C. Calibration Method for Particulate Matter Low-Cost Sensors Used in Ambient Air Quality Monitoring and Research. Sensors 2021, 21, 3960. [Google Scholar] [CrossRef]
- Giardano, M.R.; Malings, C.; Pandis, S.N.; Presto, A.A.; McNeil, V.F.; Westervelt, D.M.; Beekman, M.; Subramanian, R. From low-cost sensors to high-quality data: A summary of challenges and best practices for effectively calibrating low-cost particulate matter mass sensors. J. Aerosol Sci. 2021, 158, 105833. [Google Scholar] [CrossRef]
- Anastasiou, E.; Vilcassim, M.J.R.; Adragna, J.; Gill, E.; Tovar, A.; Thorpe, L.E.; Gordon, T. Feasibility of low-cost particle sensor types in long-term indoor air pollution health studies after repeated calibration, 2019–2021. Sci. Rep. 2022, 12, 14571. [Google Scholar] [CrossRef]
- Clark, L.P.; Sreekanth, V.; Bekbulat, B.; Baum, M.; Yang, S.; Baylon, P.; Gould, T.R.; Larson, T.V.; Seto, E.Y.W.; Space, C.D.; et al. Developing a Low-Cost Passive Method for Long-Term Average Levels of Light-Absorbing Carbon Air Pollution in Polluted Indoor Environments. Sensors 2020, 20, 3417. [Google Scholar] [CrossRef]
- Bond, T.C.; Bergstrom, R.W. Light absorption by carbonaceous particles: An investigative review. Aerosol Sci. Technol. 2006, 40, 27–67. [Google Scholar] [CrossRef]
- Volckens, J.; Quinn, C.; Leith, D.; Mehaffy, J.; Henry, C.S.; Miller-Lionberg, D. Development and evaluation of an ultrasonic personal aerosol sampler. Indoor Air 2017, 27, 409–416. [Google Scholar] [CrossRef]
- The Purple Air. PurpleAir|Real Time Air Quality Monitoring. Available online: https://www2.purpleair.com (accessed on 15 February 2022).
- Watson, J.G.; Chow, J.C.; Wa, L. Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons. Aerosol Air Qual. Res. 2005, 5, 65–102. [Google Scholar] [CrossRef]
- Karanasiou, A.; Minguillon, M.C.; Viana, M.; Alastuey, A.; Putaud, J.P.; Maenhaut, W.; Panteliadis, P.; Mocnik, G.; Favez, O.; Kuhlbusch, T.A.J. Thermal-optical analysis for the measurement of elemental carbon (EC) and organic carbon (OC) in ambient air a literature review. Atmos. Meas. Tech. Discuss. 2015, 8, 9649–9712. [Google Scholar]
- Chippiani, L.; Verlhac, S.; Aujay, R.; Maenhaut, W.; Putaud, J.P.; Sciare, J.; Jaffrezo, L.; Liousse, C.; Galy-Lacaux, C.; Alleman, L.Y.; et al. Clues for a standardized thermal-optical protocol for the assessment of organic and elemental carbon within ambient air particulate matter. Atmos. Meas. Tech. 2014, 7, 1649–1661. [Google Scholar] [CrossRef]
- Allen, G.A.; Lawrence, J.; Koutrakis, P. Field Validation of a Semi-Continuous Method for Aerosol Black Carbon (Aethalometer) and Temporal Patterns of Summertime Hourly Black Carbon Measurements in Southwestern PA. Atmos. Environ. 1999, 33, 817–823. [Google Scholar] [CrossRef]
- Hitzenberger, R.; Petzold, A.; Bauer, H.; Ctyroky, P.; Pouresmaeil, P.; Laskus, L.; Puxbaum, H. Intercomparison of Thermal and Optical Measurement Methods for Elemental Carbon and Black Carbon at an Urban Location. Environ. Sci. Technol. 2006, 40, 6377–6383. [Google Scholar] [CrossRef]
- Lalchandani, V.; Tripathi, S.N.; Graham, E.A.; Ramanathan, N.; Schauer, J.J.; Gupta, T. Recommendations for calibration factors for a photo-reference method for aerosol black carbon concentrations. Atmos. Pollut. Res. 2016, 7, 75–81. [Google Scholar] [CrossRef]
- Lack, D.A.; Moosmüller, H.; McMeeking, G.R.; Chakrabarty, R.K.; Baumgardner, D. Characterizing elemental, equivalent black, and refractory black carbon aerosol particles: A review of techniques, their limitations and uncertainties. Anal. Bioanal. Chem. 2014, 406, 99–122. [Google Scholar] [CrossRef]
- Olson, M.R.; Graham, E.; Hamad, S.; Uchupalanun, P.; Ramanathan, N.; Schauer, J.J. Quantification of elemental and organic carbon in atmospheric particulate matter using color space sensing-hue, saturation, and value (HSV) coordinates. Sci. Total Environ. 2016, 548–549, 252–259. [Google Scholar] [CrossRef]
- Sayahi, T.; Butterfield, A.; Kelly, K.E. Long-term field evaluation of the Plantower PMS low-cost particulate matter sensors. Environ. Pollut. 2019, 245, 932–940. [Google Scholar] [CrossRef] [PubMed]
- Ardon-Dryer, K.; Dryer, Y.; Williams, J.N.; Moghimi, N. Measurements of PM2.5 with PurpleAir under atmospheric conditions. Atmos. Meas. Tech. 2020, 13, 5441–5458. [Google Scholar] [CrossRef]
- Stavroulas, I.; Grivas, G.; Michalopoulos, P.; Liakakou, E.; Bougiatioti, A.; Kalkavouras, P.; Fameli, K.M.; Hatzianastassiou, N.; Mihalopoulos, N.; Gerasopoulos, E. Field Evaluation of Low-Cost PM Sensors (Purple Air PA-II) Under Variable Urban AirQuality Conditions, in Greece. Atmosphere 2020, 11, 926. [Google Scholar] [CrossRef]
- Tryner, J.; L’Orange, C.; Mehaffy, J.; Miller-Lionberg, D.; Hofstetter, J.C.; Wilson, A.; Volckens, J. Laboratory evaluation of low-cost PurpleAir PM monitors and in-field correction using co-located portable filter samplers. Atmos. Environ. 2020, 220, 117067. [Google Scholar] [CrossRef]
- Magi, B.I.; Cupini, C.; Francis, J.; Green, M.; Hauser, C. Evaluation of PM2.5 measured in an urban setting using a low-costoptical particle counter and a Federal Equivalent Method Beta Attenuation Monitor. Aerosol Sci. Technol. 2020, 54, 147–159. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Good, N.; Molter, A.; Peel, J.; Volckens, J. An accurate filter loading correction is essential for assessing personal exposure to black carbon using Aethalometer. J. Expo. Sci. Environ. Epidemiol. 2017, 27, 409–416. [Google Scholar] [CrossRef]
- Kirchstetter, T.W.; Novakov, T. Controlled generation of black carbon particles from a diffusion flame and applications in evaluating black carbon measurement methods. Atmos. Envir 2007, 41, 1874–1888. [Google Scholar] [CrossRef]
- Jeronimo, M.; Steward, Q.; Weakley, A.T.; Giacomo, J.; Zhang, X.; Hyslop, N.; Dillner, A.M.; Shupler, M.; Brauer, M. Analysis of black carbon on filters by image-based reflectance. Atmos. Environ. 2020, 223, 117300. [Google Scholar] [CrossRef] [PubMed]
- Birch, M.E. Analysis of carbonaceous aerosols: Interlaboratory comparison. Analyst 1998, 123, 851–857. [Google Scholar] [CrossRef]
- Birch, M.E. Analytical instrument performance criteria: Occupational monitoring of particulate diesel exhaust by NIOSH method 5040. Appl. Occup. Environ. Hyg 2002, 17, 400–405. [Google Scholar] [CrossRef]
- Schauer, J.J.; Mader, B.T.; Deminter, J.T.; Heidemann, G.; Bae, M.S.; Seinfeld, J.H.; Flagan, R.C.; Cary, R.A.; Smith, D.; Huebert, B.J.; et al. ACE-Asia inter-comparison of a thermal-optical method for the determination of particle-phase organic and elemental carbon. Environ. Sci. Technol. 2003, 37, 993–1001. [Google Scholar] [CrossRef]
- Emblico, L.; Cavalli, F.; Hafkenscheid, T.; Borowiak, A. Results of the First EC/OC Comparison Exercise For EU National Air Quality Reference Laboratories (AQUILA), JRC Technical Reports 2012; Publications Office of the European Union, Luxembourg. Available online: http://publications.jrc.ec.europa.eu/repository/bitstream/JRC68406/lbna25213enn.pdf (accessed on 22 June 2022).
- Chai, M.; Birch, M.E.; Deye, G. Organic and elemental carbon filter sets: Preparation method and interlaboratory results. Ann. Occup. Hyg. 2012, 56, 959–967. [Google Scholar] [PubMed]
- Panteliadis, P.; Hafkenscheid, T.; Cary, B.; Diapouli, E.; Fischer, A.; Favez, O.; Quincey, P.; Viana, M.; Hitzenberger, R.; Vecchi, R.; et al. ECOC comparison exercise with identical thermal protocols after temperature offset correction—Instrument diagnostics by in-depth evaluation of operational parameters. Atmos. Meas. Tech. 2015, 8, 779–792. [Google Scholar] [CrossRef]
- Liu, X.; Jayaratne, R.; Thai, P.; Kuhn, T.; Zing, I.; Christensen, B.; Lamont, R.; Dunbabin, M.; Zhu, S.; Gao, J.; et al. Low-cost sensors as an alternative for long-term air quality monitoring. Environ. Res. 2020, 185, 109438. [Google Scholar] [CrossRef]
- Fisher, R.A. A mathematical examination of the methods determining the accuracy of observation by the mean error, and by the mean square error. Mon. Not. R. Astron. Soc. 1920, 80, 758–770. [Google Scholar] [CrossRef]
- Khreis, H.; Johnson, J.; Jack, K.; Dadashova, B.; Park, E.S. Evaluating the Performance of Low-Cost Air Quality Monitors in Dallas, Texas. Int. J. Environ. Res. Public Health 2022, 19, 1647. [Google Scholar] [CrossRef] [PubMed]
- Zusman, M.; Schumacher, C.S.; Gassett, A.J.; Spalt, E.W.; Austin, E.; Larson, T.V.; Carvlin, G.; Seto, E.; Kaufman, J.D.; Sheppard, L. Calibration of low-cost particulate matter sensors: Model development for a multi-city epidemiological study. Environ. Int. 2020, 134, 105329. [Google Scholar] [CrossRef] [PubMed]
Device | Design | Sampling Type | Filter/Sensor Type | Measuring Species | Comments |
---|---|---|---|---|---|
WPS | Passive, time integrated. Ultra-low cost. | Cellulose (Whatman) | Light absorbing carbon (LAC) | Each WPS was photographed before and after deployment. | |
UPAS | Active, time integrated. Reference method. | Quartz (37 mm) | Elemental carbon (EC) | Each UPAS was connected to electricity and continuously sampled at a 5% duty cycle during the deployment period. | |
PurpleAir | Active, real-time. Medium-cost. | Continuous sensors 1 | PM2.5 | Electricity outages were determined with PurpleAir Map. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bekbulat, B.; Agrawal, P.; Allen, R.W.; Baum, M.; Boldbaatar, B.; Clark, L.P.; Galsuren, J.; Hystad, P.; L’Orange, C.; Vakacherla, S.; et al. Application of an Ultra-Low-Cost Passive Sampler for Light-Absorbing Carbon in Mongolia. Sensors 2023, 23, 8977. https://doi.org/10.3390/s23218977
Bekbulat B, Agrawal P, Allen RW, Baum M, Boldbaatar B, Clark LP, Galsuren J, Hystad P, L’Orange C, Vakacherla S, et al. Application of an Ultra-Low-Cost Passive Sampler for Light-Absorbing Carbon in Mongolia. Sensors. 2023; 23(21):8977. https://doi.org/10.3390/s23218977
Chicago/Turabian StyleBekbulat, Bujin, Pratyush Agrawal, Ryan W. Allen, Michael Baum, Buyantushig Boldbaatar, Lara P. Clark, Jargalsaikhan Galsuren, Perry Hystad, Christian L’Orange, Sreekanth Vakacherla, and et al. 2023. "Application of an Ultra-Low-Cost Passive Sampler for Light-Absorbing Carbon in Mongolia" Sensors 23, no. 21: 8977. https://doi.org/10.3390/s23218977
APA StyleBekbulat, B., Agrawal, P., Allen, R. W., Baum, M., Boldbaatar, B., Clark, L. P., Galsuren, J., Hystad, P., L’Orange, C., Vakacherla, S., Volckens, J., & Marshall, J. D. (2023). Application of an Ultra-Low-Cost Passive Sampler for Light-Absorbing Carbon in Mongolia. Sensors, 23(21), 8977. https://doi.org/10.3390/s23218977