A Homogeneous Colorimetric Strategy Based on Rose-like CuS@Prussian Blue/Pt for Detection of Dopamine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Apparatus
2.2. Synthesis of CuS@PB/Pt
2.3. Colorimetric Detection of DA
2.4. Quantitative Analysis of DA in Human Serum Samples
3. Results
3.1. Characterization of Materials
3.2. Feasibility of the Designed Colorimetric Strategy
3.3. Optimization of Experimental Parameters
3.4. Analytical Performance of Colorimetric Detection of DA
3.5. Selectivity, Reproducibility, and Stability of the Colorimetric Method
3.6. Real-Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Myslivecek, J. Dopamine and Dopamine-Related Ligands Can Bind Not Only to Dopamine Receptors. Life 2022, 12, 606. [Google Scholar] [CrossRef] [PubMed]
- Goldman-Rakic, P.S.; Castner, S.A.; Svensson, T.H.; Siever, L.J.; Williams, G.V. Targeting the dopamine D1 receptor in schizophrenia: Insights for cognitive dysfunction. Psychopharmacology 2004, 174, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Lahlou, S.; Gabitov, E.; Owen, L.; Shohamy, D.; Sharp, M. Preserved motor memory in Parkinson’s disease. Neuropsychologia 2022, 167, 108–161. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.A.; Conlon, M.M.; Stutt, H.R.; Wendt, L.; Ten Eyck, P.; Narayanan, N.S. Quantifying the Inverted U: A Meta-Analysis of Prefrontal Dopamine, D1 Receptors, and Working Memory. Behav. Neurosci. 2022, 136, 207–218. [Google Scholar] [CrossRef]
- Kasper, J.; Eickhoff, S.B.; Peter, J.; Dogan, I.; Wolf, R.C.; Reetz, K.; Dukart, J.; Orth, M. Functional MRI Derived Resting-State Alterations in Huntington’s Disease are Associated with the Distribution of Serotonergic and Dopaminergic Neurotransmitter Systems. Biol. Psychiatry 2021, 89, S172. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, C.; Lin, Q.H.; Zhang, J.J.; Du, W.J.; Liang, J.; Sui, N. Hypothalamic Melanocortin and Mesencephalic Dopamine Systems Regulate Reward-related Behaviors in Food Intake and Drug Use. Progress. Biochem. Biophys. 2021, 48, 541–549. [Google Scholar]
- Seeman, M.V. Philip Seeman’s contributions to the story of schizophrenia. Psychol. Med. 2022, 52, 2401–2403. [Google Scholar] [CrossRef]
- Xu, M.-S.; Fang, C.; Xu, J.; Zhang, G.-F.; Ge, L.-B. Dynamic changes of dopamine and its metabolite levels in the rat striatum after cerebral ischemia-reperfusion and electroacupuncture. Zhen Ci Yan Jiu = Acupunct. Res. 2009, 34, 230–235. [Google Scholar]
- Pi, Z.F.; Wang, Q.Q.; Zhang, J.; Song, F.R.; Liu, Z.Q. Effect of Schisandra Fruit on Neurochemicals in Hippocampus of Diabetic Encephalopathy Rat Using Online MD-HPLC-MS/MS. Chem. J. Chin. Univ. Chin. 2015, 36, 442–448. [Google Scholar]
- Gong, Q.-j.; Han, H.-x.; Wang, Y.-d.; Yao, C.-z.; Yang, H.-y.; Qiao, J.-l. An electrochemical sensor for dopamine detection using poly-tryptophan composited graphene on glassy carbon as the electrode. New Carbon. Mater. 2020, 35, 34–41. [Google Scholar] [CrossRef]
- Farah, A.M.; Thema, F.T.; Dikio, E.D. Electrochemical Detection of Hydrogen Peroxide Based on Graphene Oxide/Prussian Blue Modified Glassy Carbon Electrode. Int. J. Electrochem. Sci. 2012, 7, 5069–5083. [Google Scholar] [CrossRef]
- Qiu, H.; Yin, X.-B.; Yan, J.; Zhao, X.; Yang, X.; Wang, E. Simultaneous electrochemical and electrochemiluminescence detection for microchip and conventional capillary electrophoresis. Electrophoresis 2005, 26, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Ge, S.G.; Lu, J.J.; Yu, J.H. Fluorescence Quenching Method for Determination of Dopamine Based on Double Molecular Recognition. Chin. J. Anal. Chem. 2011, 39, 1711–1715. [Google Scholar] [CrossRef]
- Zhao, J.H.; Liu, J.X.; Tricard, S.; Wang, L.; Liang, Y.L.; Cao, L.H.; Fang, J.; Shen, W.G. Amperometric detection of hydrazine utilizing synergistic action of prussian blue @ silver nanoparticles/graphite felt modified electrode. Electrochim. Acta 2015, 171, 121–127. [Google Scholar] [CrossRef]
- Wu, Y.; Feng, J.; Hu, G.; Zhang, E.; Yu, H.H. Colorimetric Sensors for Chemical and Biological Sensing Applications. Sensors 2023, 23, 2749. [Google Scholar] [CrossRef]
- Liu, S.M.; Zhou, X.Y.; Lv, C.Y.; Liu, R.; Li, S.Y.; Yang, G.Y. A novel bromelain-MnO2 biosensor for colorimetric determination of dopamine. N. J. Chem. 2021, 45, 92–97. [Google Scholar] [CrossRef]
- Zhu, Z.; Wu, C.C.; Liu, H.P.; Zou, Y.; Zhang, X.L.; Kang, H.Z.; Yang, C.J.; Tan, W.H. An Aptamer Cross-Linked Hydrogel as a Colorimetric Platform for Visual Detection. Angew. Chem.-Int. Ed. 2010, 49, 1052–1056. [Google Scholar] [CrossRef]
- Chen, J.X.; Ma, Q.; Li, M.H.; Chao, D.Y.; Huang, L.; Wu, W.W.; Fang, Y.X.; Dong, S.J. Glucose-oxidase like catalytic mechanism of noble metal nanozymes. Nat. Commun. 2021, 12, 1–12. [Google Scholar] [CrossRef]
- Cheng, Y.Y.; Liang, L.; Ye, F.G.; Zhao, S.L. Ce-MOF with Intrinsic Haloperoxidase-Like Activity for Ratiometric Colorimetric Detection of Hydrogen Peroxide. Biosensors 2021, 11, 204. [Google Scholar] [CrossRef]
- Sun, D.M.; Zhao, Q.; Tan, F.; Wang, X.C.; Gao, J.S. Simultaneous detection of dopamine, uric acid, and ascorbic acid using SnOnanoparticles/multi-walled carbon nanotubes/carbon paste electrode. Anal. Methods 2012, 4, 3283–3289. [Google Scholar] [CrossRef]
- Fan, K.L.; Xi, J.Q.; Fan, L.; Wang, P.X.; Zhu, C.H.; Tang, Y.; Xu, X.D.; Liang, M.M.; Jiang, B.; Yan, X.Y.; et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 2018, 9, 1440. [Google Scholar] [CrossRef]
- Abdelhamid, H.N.; Sharmoukh, W. Intrinsic catalase-mimicking MOFzyme for sensitive detection of hydrogen peroxide and ferric ions. Microchem. J. 2021, 163, 105873. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, X.; Yang, J.; Jiang, Y.; He, N. Peroxidase-like activity of mesoporous silica encapsulated Pt nanoparticle and its application in colorimetric immunoassay. Anal. Chim. Acta 2015, 862, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zeng, Z.; Bao, S.; Wang, M.; Qi, X.; Fan, Z.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 2013, 4, 1444. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zuo, X.; Wang, X. Preparation of graphene supported Pt nanoparticles by a plasma approach and their application for methanol electro-oxidation: A comparison with chemical reduction. Dalton Trans. 2014, 43, 12961–12966. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Luo, Z.; Huang, X.; Tan, C.; Li, H.; Zheng, B.; Li, B.; Huang, Y.; Yang, J.; et al. Liquid-phase growth of platinum nanoparticles on molybdenum trioxide nanosheets: An enhanced catalyst with intrinsic peroxidase-like catalytic activity. Nanoscale 2014, 6, 12340–12344. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Chen, X.; Shi, S.; Mo, S.; Zheng, N. An investigation of the mimetic enzyme activity of two-dimensional Pd-based nanostructures. Nanoscale 2015, 7, 19018–19026. [Google Scholar] [CrossRef]
- Wu, Q.; He, L.; Jiang, Z.W.; Li, Y.; Cao, Z.M.; Huang, C.Z.; Li, Y.F. CuO nanoparticles derived from metal-organic gel with excellent electrocatalytic and peroxidase-mimicking activities for glucose and cholesterol detection. Biosens. Bioelectron. 2019, 145, 111704. [Google Scholar] [CrossRef]
- Gao, J.J.; Liu, H.; Pang, L.Y.; Guo, K.; Li, J.Q. Biocatalyst and Colorimetric/Fluorescent Dual Biosensors of HO Constructed via Hemoglobin-Cu(PO) Organic/Inorganic Hybrid Nanoflowers. Acs Appl. Mater. Inter. 2018, 10, 30441–30450. [Google Scholar] [CrossRef]
- Goel, S.; Chen, F.; Cai, W.B. Synthesis and Biomedical Applications of Copper Sulfide Nanoparticles: From Sensors to Theranostics. Small 2014, 10, 631–645. [Google Scholar] [CrossRef]
- Swaidan, A.; Barras, A.; Addad, A.; Tahon, J.F.; Toufaily, J.; Hamieh, T.; Szunerits, S.; Boukherroub, R. Colorimetric sensing of dopamine in beef meat using copper sulfide encapsulated within bovine serum albumin functionalized with copper phosphate (CuS-BSA-Cu(PO)) nanoparticles. J. Colloid. Interf. Sci. 2021, 582, 732–740. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Ray, C.; Mallick, S.; Sarkar, S.; Sahoo, R.; Negishi, Y.; Pal, T. A Gel-Based Approach To Design Hierarchical CuS Decorated Reduced Graphene Oxide Nanosheets for Enhanced Peroxidase-like Activity Leading to Colorimetric Detection of Dopamine. J. Phys. Chem. C 2015, 119, 23790–23800. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, S.L.; Yin, J.J.; He, W.W.; Lu, W.; Ma, M.; Gu, N.; Zhang, Y. Prussian Blue Nanoparticles as Multienzyme Mimetics and Reactive Oxygen Species Scavengers. J. Am. Chem. Soc. 2016, 138, 5860–5865. [Google Scholar] [CrossRef]
- Zhang, W.M.; Ma, D.; Du, J.X. Prussian blue nanoparticles as peroxidase mimetics for sensitive colorimetric detection of hydrogen peroxide and glucose. Talanta 2014, 120, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.Q.; Gong, L.B.; Miao, X.Y.; Chen, C.Y.; Su, S. Prussian Blue Nanoparticle Supported MoS2 Nanocomposites as a Peroxidase-Like Nanozyme for Colorimetric Sensing of Dopamine. Biosensors 2022, 12, 260. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Liu, L.; Wang, Y.G.; Ren, R.; Fan, D.W.; Wu, D.; Du, Y.; Xu, K.; Ren, X.; Wei, Q.; et al. Enzyme-free colorimetric immunoassay for procalcitonin based on MgFe2O4 sacrificial probe with the Prussian blue production. Sens. Actuators B -Chem. 2020, 316, 128163. [Google Scholar] [CrossRef]
- Liu, K.G.; Yuan, R.; Chai, Y.Q.; Tang, D.P.; An, H.Z. AuCl4 (-) and Fe3+/Fe(CN)(6) (3-) ions-derivated immunosensing interface for electrochemical immunoassay of carcinoembryonic antigen in human serum. Bioprocess. Biosyst. Eng. 2010, 33, 179–185. [Google Scholar] [CrossRef]
- Qu, J.; Chen, X.; Wang, Y.; Fan, Y.; Wang, J.; Yu, S.; Wu, M.; Hu, L. Electrochemical properties of flowerlike CuS/rGO compound material. Ionics 2021, 27, 4409–4417. [Google Scholar] [CrossRef]
- Li, L.H.; Zhang, P.; Li, Z.Y.; Li, D.Y.; Han, B.; Tu, L.; Li, B.; Wang, Y.G.; Ren, L.; Yang, P.Y.; et al. CuS/Prussian blue core-shell nanohybrid as an electrochemical sensor for ascorbic acid detection. Nanotechnology 2019, 30, 325501. [Google Scholar] [CrossRef]
- Shahvar, A.; Shamsaei, D.; Saraji, M. A portable smartphone-based colorimetric sensor for rapid determination of water content in ethanol. Measurement 2020, 150, 107068. [Google Scholar] [CrossRef]
- Zhu, J.L.; Peng, X.; Nie, W.; Wang, Y.J.; Gao, J.W.; Wen, W.; Selvaraj, J.N.; Zhang, X.H.; Wang, S.F. Hollow copper sulfide nanocubes as multifunctional nanozymes for colorimetric detection of dopamine and electrochemical detection of glucose. Biosens. Bioelectron. 2019, 141, 111450. [Google Scholar] [CrossRef] [PubMed]
- Farah, A.M.; Shooto, N.D.; Thema, F.T.; Modise, J.S.; Dikio, E.D. Fabrication of Prussian Blue/Multi-Walled Carbon Nanotubes Modified Glassy Carbon Electrode for Electrochemical Detection of Hydrogen Peroxide. Int. J. Electrochem. Sci. 2012, 7, 4302–4313. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, D.; Ran, J.; Yi, H.; Feng, P.; Liu, B. A Homogeneous Colorimetric Strategy Based on Rose-like CuS@Prussian Blue/Pt for Detection of Dopamine. Sensors 2023, 23, 9029. https://doi.org/10.3390/s23229029
Yang D, Ran J, Yi H, Feng P, Liu B. A Homogeneous Colorimetric Strategy Based on Rose-like CuS@Prussian Blue/Pt for Detection of Dopamine. Sensors. 2023; 23(22):9029. https://doi.org/10.3390/s23229029
Chicago/Turabian StyleYang, Di, Jiao Ran, Huafei Yi, Pujin Feng, and Bingqian Liu. 2023. "A Homogeneous Colorimetric Strategy Based on Rose-like CuS@Prussian Blue/Pt for Detection of Dopamine" Sensors 23, no. 22: 9029. https://doi.org/10.3390/s23229029
APA StyleYang, D., Ran, J., Yi, H., Feng, P., & Liu, B. (2023). A Homogeneous Colorimetric Strategy Based on Rose-like CuS@Prussian Blue/Pt for Detection of Dopamine. Sensors, 23(22), 9029. https://doi.org/10.3390/s23229029