Indirect Sensing of Subclinical Intramammary Infections in Dairy Herds with a Milking Robot
Abstract
:1. Introduction
2. Materials and Methods
2.1. Herds and Cow Selection
2.2. Milk Sampling
2.3. Microbiological Testing
2.4. Basic Diagnostic Interpretation of the MaP and MiP at the Udder’s Quarter Level
2.5. Aggregated Diagnostic Interpretation of the MaPs and MiPs at the Cow’s Udder Level
2.6. Statistical Analysis and Two-Level Mixed-Effects Modeling
3. Results
3.1. Major and Minor Mastitis Pathogens at the Cow Udder Quarter Level
3.2. Major and Minor Mastitis Pathogens at the Cow’s Udder Level
3.3. Modelling of the Factors Associated with the Appearance of Mastitis Pathogens
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ebrahimie, E.; Ebrahimi, F.; Ebrahimi, M.; Tomlinson, S.; Petrovski, K.R. A large-scale study of indicators of sub-clinical mastitis in dairy cattle by attribute weighting analysis of milk composition features: Highlighting the predictive power of lactose and electrical conductivity. J. Dairy Res. 2018, 85, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Schukken, Y.H.; Wilson, D.J.; Welcome, F.; Garrison-Tikofsky, L.; Gonzalez, R.N. Monitoring udder health and milk quality using somatic cell counts. Vet. Res. 2003, 34, 579–596. [Google Scholar] [CrossRef] [PubMed]
- Meilina, H.; Kuroki, S.; Jinendra, B.M.; Ikuta, K.; Tsenkova, R. Double threshold method for mastitis diagnosis based on NIR spectra of raw milk and chemometrics. Biosyst. Eng. 2009, 104, 243–249. [Google Scholar] [CrossRef]
- Nyman, A.K.; Persson-Waller, K.; Emanuelson, U.; Frössling, J. Sensitivity and specificity of PCR analysis and bacteriological culture of milk samples for identification of intramammary infections in dairy cows using latent class analysis. Prev. Vet. Med. 2016, 135, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Nyman, A.K.; Emanuelson, U.; Persson-Waller, K. Diagnostic test performance of somatic cell count, lactate dehydrogenase, and N-acetyl-β-d-glucosaminidase for detecting dairy cows with intramammary infection. J. Dairy Sci. 2016, 99, 1440–1448. [Google Scholar] [CrossRef] [PubMed]
- Dahlberg, J.; Williams, J.E.; Mcguire, M.A.; Peterson, H.K.; Östensson, K.; Agenäs, S.; Dicksved, J.; Persson-Waller, K. Microbiota of bovine milk, teat skin, and teat canal : Similarity and variation due to sampling technique and milk fraction. J. Dairy Sci. 2020, 103, 7322–7330. [Google Scholar] [CrossRef] [PubMed]
- Kamphuis, C.; Dela Rue, B.; Mein, G.; Jago, J. Development of protocols to evaluate in-line mastitis-detection systems. J. Dairy Sci. 2013, 96, 4047–4058. [Google Scholar] [CrossRef]
- Sargeant, J.M.; Leslie, K.E.; Shirley, J.E.; Pulkrabek, B.J.; Lim, G.H. Sensitivity and specificity of somatic cell count and California Mastitis Test for identifying intramammary infection in early lactation. J. Dairy Sci. 2001, 84, 2018–2024. [Google Scholar] [CrossRef]
- Leitner, G.; Blum, S.E.; Krifuks, O.; Edery, N.; Merin, U. Correlation between milk bacteriology, cytology and mammary tissue histology in cows: Cure from the pathogen or recovery from the inflammation. Pathogens 2020, 9, 364. [Google Scholar] [CrossRef]
- Dohoo, I.R.; Andersen, S.; Dingwell, R.T.; Hand, K.; Kelton, D.; Leslie, K.; Schukken, Y.H.; Godden, S. Diagnosing intramammary infections: Comparison of multiple versus single quarter milk samples for the identification of intramammary infections in lactating dairy cows. J. Dairy Sci. 2011, 94, 5515–5522. [Google Scholar] [CrossRef]
- Andersen, S.; Dohoo, I.R.; Olde Riekerink, R.; Stryhn, H. Diagnosing intramammary infections: Evaluating expert opinions on the definition of intramammary infection using conjoint analysis. J. Dairy Sci. 2010, 93, 2966–2975. [Google Scholar] [CrossRef] [PubMed]
- Merle, R.; Schröder, A.; Hamann, J. Cell function in the bovine mammary gland: A preliminary study on interdependence of healthy and infected udder quarters. J. Dairy Res. 2007, 74, 174. [Google Scholar] [CrossRef] [PubMed]
- Andrews, J.; Davison, T.; Pereira, J. Building and yard design, warm climates. In Encyclopedia of Dairy Sciences, 3rd ed.; Academic Press: Cambridge, MA, USA, 2021; Volume 1, pp. 212–233. ISBN 9780128187661. [Google Scholar]
- Penry, J.F. Mastitis Control in Automatic Milking Systems. Vet. Clin. N. Am. Food Anim. Pract. 2018, 34, 439–456. [Google Scholar] [CrossRef]
- Martins, S.A.M.; Martins, V.C.; Cardoso, F.A.; Germano, J.; Rodrigues, M.; Duarte, C.; Bexiga, R.; Cardoso, S. Biosensors for On-Farm Diagnosis of Mastitis. Front. Bioeng. Biotechnol. 2019, 7, 186. [Google Scholar] [CrossRef] [PubMed]
- White, L.J.; Schukken, Y.H.; Lam, T.J.G.M.; Medley, G.F.; Chappell, M.J. A multispecies model for the transmission and control of mastitis in dairy cows. Epidemiol. Infect. 2001, 127, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, J.L.; Tomazi, T.; Barreiro, J.R.; Beuron, D.C.; Arcari, M.A.; Lee, S.H.I.; Martins, C.M.M.R.; Araújo Junior, J.P.; Santos, M.V. Effects of bovine subclinical mastitis caused by Corynebacterium spp. on somatic cell count, milk yield and composition by comparing contralateral quarters. Vet. J. 2016, 209, 87–92. [Google Scholar] [CrossRef]
- Østerås, O.; Edge, V.L.; Martin, S.W. Determinants of success or failure in the elimination of major mastitis pathogens in selective dry cow therapy. J. Dairy Sci. 1999, 82, 1221–1231. [Google Scholar] [CrossRef]
- Rainard, P.; Poutrel, B. Effect of naturally occurring intramammary infections by minor pathogens on new infections by major pathogens in cattle. Am. J. Vet. Res. 1988, 49, 327–329. [Google Scholar]
- Condas, L.A.Z.; De Buck, J.; Nobrega, D.B.; Carson, D.A.; Roy, J.P.; Keefe, G.P.; DeVries, T.J.; Middleton, J.R.; Dufour, S.; Barkema, H.W. Distribution of non-aureus staphylococci species in udder quarters with low and high somatic cell count, and clinical mastitis. J. Dairy Sci. 2017, 100, 5613–5627. [Google Scholar] [CrossRef]
- Pyörälä, S.; Taponen, S. Coagulase-negative staphylococci-Emerging mastitis pathogens. Vet. Microbiol. 2009, 134, 3–8. [Google Scholar] [CrossRef]
- Schukken, Y.H.; Gonzalez, R.N.; Tikofsky, L.L.; Schulte, H.F.; Santisteban, C.G.; Welcome, F.L.; Bennett, G.J.; Zurakowski, M.J.; Zadoks, R.N. CNS mastitis: Nothing to worry about? Vet. Microbiol. 2009, 134, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Piepers, S.; Schukken, Y.H.; Passchyn, P.; De Vliegher, S. The effect of intramammary infection with coagulase-negative staphylococci in early lactating heifers on milk yield throughout first lactation revisited. J. Dairy Sci. 2013, 96, 5095–5105. [Google Scholar] [CrossRef] [PubMed]
- Piepers, S.; Opsomer, G.; Barkema, H.W.; de Kruif, A.; De Vliegher, S. Heifers infected with coagulase-negative staphylococci in early lactation have fewer cases of clinical mastitis and higher milk production in their first lactation than noninfected heifers. J. Dairy Sci. 2010, 93, 2014–2024. [Google Scholar] [CrossRef]
- Bexiga, R.; Koskinen, M.T.; Holopainen, J.; Carneiro, C.; Pereira, H.; Ellis, K.A.; Vilela, C.L. Diagnosis of intramammary infection in samples yielding negative results or minor pathogens in conventional bacterial culturing. J. Dairy Res. 2011, 78, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Dingwell, R.T.; Leslie, K.E.; Schukken, Y.H.; Sargeant, J.M.; Timms, L.L. Evaluation of the California mastitis test to detect an intramammary infection with a major pathogen in early lactation dairy cows. Can. Vet. J. 2003, 44, 413–416. [Google Scholar]
- Reyher, K.K.; Dohoo, I.R.; Scholl, D.T.; Keefe, G.P. Evaluation of minor pathogen intramammary infection, susceptibility parameters, and somatic cell counts on the development of new intramammary infections with major mastitis pathogens. J. Dairy Sci. 2012, 95, 3766–3780. [Google Scholar] [CrossRef]
- Khatun, M.; Thomson, P.C.; Kerrisk, K.L.; Lyons, N.A.; Clark, C.E.F.; Molfino, J.; García, S.C. Development of a new clinical mastitis detection method for automatic milking systems. J. Dairy Sci. 2018, 101, 9385–9395. [Google Scholar] [CrossRef]
- Lusis, I.; Antane, V.; Laurs, A. Effectiveness of mastitis detection index for cow monitoring and abnormal milk detection in milking robots. In Proceedings of the Engineering for Rural Development, Jelgava, Latvia, 24–26 May 2017; Latvia University of Life Sciences & Technologies: Jelgava, Latvia, 2017; Volume 16, pp. 1383–1387. [Google Scholar]
- Bausewein, M.; Mansfeld, R.; Doherr, M.G.; Harms, J.; Sorge, U.S. Sensitivity and Specificity for the Detection of Clinical Mastitis by Automatic Milking Systems in Bavarian Dairy Herds. Animals 2022, 12, 2131. [Google Scholar] [CrossRef]
- De Vliegher, S.; Ohnstad, I.; Piepers, S. Management and prevention of mastitis: A multifactorial approach with a focus on milking, bedding and data-management. J. Integr. Agric. 2018, 17, 1214–1233. [Google Scholar] [CrossRef]
- Lusis, I.; Antane, V.; Laurs, A. Effectiveness of somatic cell count determination in the milking robots. In Proceedings of the Engineering for Rural Development—International Scientific Conference, Jelgava, Latvia, 27–28 May 2010; Latvia University of Life Sciences & Technologies: Jelgava, Latvia, 2010; pp. 112–116. [Google Scholar]
- Perrotin, T. Milking robots can help farmers in their fight against mastitis. Int. Dairy Top. 2015, 14, 15. [Google Scholar]
- National Mastitis Council. Laboratory Handbook on Bovine Mastitis, 3rd ed.; Hogan, J.S., Gonzalez, R.N., Harmon, R.J., Nickerson, S.C., Oliver, S.P., Pankey, J.W., Smith, K.L., Eds.; National Mastitis Council: New Prague, MN, USA, 2017; ISBN 9780932147035. [Google Scholar]
- National Mastitis Council. Laboratory and Field Handbook on Bovine Mastitis; Bringe, A., Eberhart, R.J., Jasper, D.E., Newman, L., Row, E., Schultze, W.D., Smith, K.L., Eds.; National Mastitis Council: Arlington, VA, USA, 1987; ISBN 0-932147-03-8. [Google Scholar]
- Lücken, A.; Wente, N.; Zhang, Y.; Woudstra, S.; Krömker, V. Corynebacteria in Bovine Quarter Milk Samples—Species and Somatic Cell Counts. Pathogens 2021, 10, 831. [Google Scholar] [CrossRef] [PubMed]
- Shook, G.E. Conversion of Somatic Cell Count to Somatic Cell Score. Vet. Clin. N. Am. Food Anim. Pract. 1993, 9, 579–581. [Google Scholar]
- Shook, G.E. Genetic improvement of mastitis through selection on somatic cell count. Vet. Clin. N. Am. Food Anim. Pract. 1993, 9, 563–577. [Google Scholar] [CrossRef] [PubMed]
- Dohoo, I.R.; Martin, W.; Stryhn, H. Confounding: Detection and Control. In Veterinary Epidemiologic Research; VERinc: Charlottetown, PE, Canada, 2010; pp. 271–322. ISBN 978-0-919013-60-5. [Google Scholar]
- Juronen, D.; Kuusk, A.; Kivirand, K.; Rinken, A.; Rinken, T. Immunosensing system for rapid multiplex detection of mastitis-causing pathogens in milk. Talanta 2018, 178, 949–954. [Google Scholar] [CrossRef]
- France, A.E.; Dufour, S.; Kelton, D.F.; Barkema, H.W.; Kurban, D.; DeVries, T.J. Effect of dry-off management on milking behavior, milk yield, and somatic cell count of dairy cows milked in automated milking systems. J. Dairy Sci. 2022, 105, 3544–3558. [Google Scholar] [CrossRef]
- Heikkilä, A.M.; Liski, E.; Pyörälä, S.; Taponen, S. Pathogen-specific production losses in bovine mastitis. J. Dairy Sci. 2018, 101, 9493–9504. [Google Scholar] [CrossRef]
- Reyher, K.K.; Dohoo, I.R. Diagnosing intramammary infections: Evaluation of composite milk samples to detect intramammary infections. J. Dairy Sci. 2011, 94, 3387–3396. [Google Scholar] [CrossRef]
- Nyman, A.K.; Fasth, C.; Persson-Waller, K. Intramammary infections with different non-aureus staphylococci in dairy cows. J. Dairy Sci. 2018, 101, 1403–1418. [Google Scholar] [CrossRef]
- Hordofa, D.L. Review on Biofilm Forming Microbials in Cases of Bovine Mastitis and its Impact on Treatment. J. Vet. Sci. Technol. 2022, 13, 1–8. [Google Scholar] [CrossRef]
Parity | Lactation Phases 1 | Total | |||||||
---|---|---|---|---|---|---|---|---|---|
Early | Middle | Late | Extended | ||||||
Case | Control | Case | Control | Case | Control | Case | Control | ||
1st | 0 | 2 | 1 | 1 | 3 | 3 | 3 | 4 | 17 |
2nd | 0 | 0 | 1 | 1 | 2 | 2 | 2 | 2 | 10 |
≥3rd | 0 | 1 | 1 | 1 | 5 | 5 | 3 | 2 | 18 |
Total cows | 0 | 3 | 3 | 3 | 10 | 10 | 8 | 8 | 45 |
The Permanence of the Pathogen’s Presence | The Group of Pathogens | Summary Classification of the Pathogen’s Group | |
---|---|---|---|
At the 1st Sampling | At the 2nd Sampling 1 | ||
Continuous | MaP | MaP | Major pathogen continuous |
MiP | MiP | Minor pathogen continuous | |
Episodic | MaP | None | Major pathogen episodic |
None | MaP | ||
MaP | MiP | ||
MiP | None | Minor pathogen episodic | |
None | MiP | ||
MiP | MiP 2 | ||
No presence | None | None | Free of pathogen |
Summary Classification of the Pathogen Group | The Number of Cow Udder Quarters (%) | The Ratio between Case 1/Control 2 Groups |
---|---|---|
Continuous MaP | 10 (5.7%) | 4/6 |
Continuous MiP | 74 (42.0%) | 37/37 |
Episodic MaP | 12 (6.8%) | 11/1 |
Episodic MiP | 40 (22.7%) | 14/26 |
Free of pathogens | 40 (22.7%) | 15/25 |
Total | 176 (100%) | 81/95 |
The difference case/control | … | p = 0.008 |
Diagnosis Level | The Disposition of Pathogens in the Cow’s Udder | Coagulase-Positive Staphylococci | Coagulase-Negative Staphylococci | Esculin-Positive Streptococci | Enterococcus spp. | Corynebacterium spp. | Number of Cows Number of Cows, % (Case 1 + Control 2) | ||
---|---|---|---|---|---|---|---|---|---|
With the Pathogen in Any of the Quarters | Free of Pathogen in All Quarters | In Total | |||||||
At the first sampling time 3 | |||||||||
Cow udder Level 4 | Single pathogen | - | 3 | 1 | - | 7 | 11 24.4% (5 + 6) | 5 11.1% (1 + 4) | 45 100% (21 + 24) |
| - | 1 | - | - | 3 | ||||
| - | 2 | - | - | 2 | ||||
| - | - | 1 | - | - | ||||
| - | - | - | - | 2 | ||||
Multiple pathogen | [5] 5 | [28] 5 | [8] 5 | [2] 5 | [24] 5 | 29 64.5% (15 + 14) | |||
| 5 | 24 | 4 | 1 | 10 | ||||
| - | 2 | 2 | 1 | 7 | ||||
| - | 2 | 2 | - | 5 | ||||
| - | - | - | - | 2 | ||||
At the second sampling time 3 | |||||||||
Cow udder level | Single pathogen | - | 3 | - | - | 13 | 16 35.6% (6 + 10) | 1 2.2% (1 + 0) | 45 100% (21 + 24) |
| - | 1 | - | - | 3 | ||||
| - | 2 | - | - | 4 | ||||
| - | - | - | - | 2 | ||||
| - | - | - | - | 4 | ||||
Multiple pathogen | [4] 5 | [24] 5 | [6] 5 | [1] 5 | [27] 5 | 28 62.2% (14 + 14) | |||
| 3 | 13 | 3 | 1 | 11 | ||||
| 1 | 7 | 1 | - | 9 | ||||
| - | 4 | 2 | - | 4 | ||||
| - | - | - | - | 3 |
Mastitis Pathogen in Milk | Number of Cows 1 | Total (%) | |||
---|---|---|---|---|---|
Keeping 2 the Pathogen Status | Changing 3 the Pathogen Status | ||||
Single | Multiple | Single | Multiple | ||
Coagulase-positive staphylococci | - | 2 2/0/0/0 | - | - | 2 |
Coagulase-negative staphylococci | - | 5 4/1/0/0 | 2 1/1/0/0 | - | 7 |
Corynebacterium spp. | - | 4 2/2/0/0 | 5 0/5/0/0 | 3 2/0/1/0 | 12 |
Combination of pathogens (coagulase-negative staphylococci and Corynebacterium spp.) | - | - | - | 1 4 0/1/0/0 | 1 |
The sum of cows with the appearance of any pathogen or pathogen combination | - | 11 | 7 | 4 | 22 (48.9) |
Number of cows without the appearance of any pathogen | 5 | 12 | 4 | 2 | 23 (51.1) |
Total, cows | 5 | 23 | 11 | 6 | 45 (100.0) |
Factors 1 | Mean | SE 2 | Min | Max | OR 3 ± SE | Chi-Squared Statistic | p-Value |
---|---|---|---|---|---|---|---|
Udder quarter-level LSSCC 4 at the first sampling (log2 units) | 2.93 | 0.16 | 0.00 | 8.14 | 0.71 ± 0.11 | 4.63 | 0.032 |
Udder quarter-level lactose at first sampling (%) | 4.53 | 0.04 | 2.47 | 5.26 | 2.30 ± 1.28 | 2.25 | 0.133 |
Cow-level LSSCC 4 in the current month (log2 units) | 3.19 | 0.13 | 0.36 | 6.63 | 0.80 ± 0.14 | 1.53 | 0.216 |
Standard lactation of ≤305 (days) | 212.24 | 14.08 | 47 | 293 | Reference category | ||
Extended lactation of >305 (days) | 390.33 | 19.68 | 313 | 537 | 1.91 ± 1.04 | 1.42 | 0.233 |
Predictors | Mean ± SE 1 | OR 2 ± SE | p-Value | 95% CI 3 | Effect |
---|---|---|---|---|---|
A 4: LSSCC (log2 units) 5 | 2.93 ± 0.16 | 0.56 ± 0.10 | 0.001 | 0.40 … 0.80 | Negative |
Standard lactation of ≤305 (days) | 212.24 ± 14.08 | Reference category | |||
B 4: Extended lactation of >305 (days) | 390.33 ± 19.68 | 0.65 ± 0.45 | 0.529 | 0.16 … 2.53 | Not significant |
Interaction: A × B | … | 1.69 ± 0.0.38 | 0.020 | 1.09 … 2.63 | Positive |
Constant | … | 0.63 ± 0.25 | 0.234 | 0.29 … 1.35 | … |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lusis, I.; Antane, V.; Waldmann, A. Indirect Sensing of Subclinical Intramammary Infections in Dairy Herds with a Milking Robot. Sensors 2023, 23, 9036. https://doi.org/10.3390/s23229036
Lusis I, Antane V, Waldmann A. Indirect Sensing of Subclinical Intramammary Infections in Dairy Herds with a Milking Robot. Sensors. 2023; 23(22):9036. https://doi.org/10.3390/s23229036
Chicago/Turabian StyleLusis, Ivars, Vita Antane, and Andres Waldmann. 2023. "Indirect Sensing of Subclinical Intramammary Infections in Dairy Herds with a Milking Robot" Sensors 23, no. 22: 9036. https://doi.org/10.3390/s23229036