Machine Learning Modeling for Spatial-Temporal Prediction of Geohazard
1. Introduction
2. Overview of Contribution
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Chen, J.; Gao, H.; Han, L.; Yu, R.; Mei, G. Susceptibility Analysis of Glacier Debris Flow Based on Remote Sensing Imagery and Deep Learning: A Case Study along the G318 Linzhi Section. Sensors 2023, 23, 6608. https://doi.org/10.3390/s23146608.
- Ghasemian, B.; Shahabi, H.; Shirzadi, A.; Al-Ansari, N.; Jaafari, A.; Kress, V.R.; Geertsema, M.; Renoud, S.; Ahmad, A. A Robust Deep-Learning Model for Landslide Susceptibility Mapping: A Case Study of Kurdistan Province, Iran. Sensors 2022, 22, 1573. https://doi.org/10.3390/s22041573.
- Hussain, M.A.; Chen, Z.; Zheng, Y.; Shoaib, M.; Shah, S.U.; Ali, N.; Afzal, Z. Landslide Susceptibility Mapping Using Machine Learning Algorithm Validated by Persistent Scatterer In-SAR Technique. Sensors 2022, 22, 3119. https://doi.org/10.3390/s22093119.
- Zhang, J.; Tang, H.; Tannant, D.D.; Lin, C.; Xia, D.; Wang, Y.; Wang, Q. A Novel Model for Landslide Displacement Prediction Based on EDR Selection and Multi-Swarm Intelligence Optimization Algorithm. Sensors 2021, 21, 8352. https://doi.org/10.3390/s21248352.
- Yang, B.; Xiao, T.; Wang, L.; Huang, W. Using Complementary Ensemble Empirical Mode Decomposition and Gated Recurrent Unit to Predict Landslide Displacements in Dam Reservoir. Sensors 2022, 22, 1320. https://doi.org/10.3390/s22041320.
- Miao, F.; Xie, X.; Wu, Y.; Zhao, F. Data Mining and Deep Learning for Predicting the Displacement of “Step-like” Landslides. Sensors 2022, 22, 481. https://doi.org/10.3390/s22020481.
- Wu, T.; Yu, H.; Jiang, N.; Zhou, C.; Luo, X. Slope with Predetermined Shear Plane Stability Predictions under Cyclic Loading with Innovative Time Series Analysis by Mechanical Learning Approach. Sensors 2022, 22, 2647. https://doi.org/10.3390/s22072647.
- Ma, J.; Jiang, S.; Liu, Z.; Ren, Z.; Lei, D.; Tan, C.; Guo, H. Machine Learning Models for Slope Stability Classification of Circular Mode Failure: An Updated Database and Automated Machine Learning (AutoML) Approach. Sensors 2022, 22, 9166. https://doi.org/10.3390/s22239166.
- Zhang, C.; Wen, H.; Liao, M.; Lin, Y.; Wu, Y.; Zhang, H. Study on Machine Learning Models for Building Resilience Evaluation in Mountainous Area: A Case Study of Banan District, Chongqing, China. Sensors 2022, 22, 1163. https://doi.org/10.3390/s22031163.
- Zhang, D.; Wei, K.; Yao, Y.; Yang, J.; Zheng, G.; Li, Q. Capture and Prediction of Rainfall-Induced Landslide Warning Signals Using an Attention-Based Temporal Convolutional Neural Network and Entropy Weight Methods. Sensors 2022, 22, 6240. https://doi.org/10.3390/s22166240.
- Jiang, S.; Ma, J.; Liu, Z.; Guo, H. Scientometric Analysis of Artificial Intelligence (AI) for Geohazard Research. Sensors 2022, 22, 7814. https://doi.org/10.3390/s22207814.
References
- Ma, J.W.; Xia, D.; Wang, Y.K.; Niu, X.X.; Jiang, S.; Liu, Z.Y.; Guo, H.X. A Comprehensive Comparison among Metaheuristics (MHs) for Geohazard Modeling using Machine Learning: Insights from A Case Study of Landslide Displacement Prediction. Eng. Appl. Artif. Intell. 2022, 114, 105150. [Google Scholar] [CrossRef]
- Dou, J.; Xiang, Z.; Xu, Q.; Zheng, P.; Wang, X.; Su, A.; Liu, J.; Luo, W. Application and development trend of machine learning in landslide intelligent disaster prevention and mitigation. Earth Sci. 2023, 48, 1657. [Google Scholar] [CrossRef]
- Jiang, S.; Ma, J.; Liu, Z.; Guo, H. Scientometric analysis of artificial intelligence (AI) for geohazard research. Sensors 2022, 22, 7814. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Pradhan, B.; Stuyts, B.; Xu, C. Application of artificial intelligence in geotechnical and geohazard investigations. Geol. J. 2023, 58, 2187–2194. [Google Scholar] [CrossRef]
- Dikshit, A.; Pradhan, B.; Alamri, A.M. Pathways and challenges of the application of artificial intelligence to geohazards modelling. Gondwana Res. 2021, 100, 290–301. [Google Scholar] [CrossRef]
- Phoon, K.-K.; Zhang, W. Future of machine learning in geotechnics. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2022, 17, 7–22. [Google Scholar] [CrossRef]
- Ma, Z.J.; Mei, G. Deep learning for geological hazards analysis: Data, models, applications, and opportunities. Earth Sci. Rev. 2021, 223, 103858. [Google Scholar] [CrossRef]
- Zhang, W.; Gu, X.; Tang, L.; Yin, Y.; Liu, D.; Zhang, Y. Application of machine learning, deep learning and optimization algorithms in geoengineering and geoscience: Comprehensive review and future challenge. Gondwana Res. 2022, 109, 1–17. [Google Scholar] [CrossRef]
- Ma, Z.J.; Mei, G.; Piccialli, F. Machine learning for landslides prevention: A survey. Neural Comput. Appl. 2020, 33, 10881–10907. [Google Scholar] [CrossRef]
- Bergen, K.J.; Johnson, P.A.; de Hoop, M.V.; Beroza, G.C. Machine learning for data-driven discovery in solid Earth geoscience. Science 2019, 363, eaau0323. [Google Scholar] [CrossRef] [PubMed]
- Pu, Y.; Apel, D.B.; Liu, V.; Mitri, H. Machine learning methods for rockburst prediction-state-of-the-art review. Int. J. Min. Sci. Technol. 2019, 29, 565–570. [Google Scholar] [CrossRef]
- Dramsch, J.S. Chapter One—70 years of machine learning in geoscience in review. In Advances in Geophysics; Moseley, B., Krischer, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 61, pp. 1–55. [Google Scholar]
- Sun, Z.; Sandoval, L.; Crystal-Ornelas, R.; Mousavi, S.M.; Wang, J.; Lin, C.; Cristea, N.; Tong, D.; Carande, W.H.; Ma, X.; et al. A review of Earth Artificial Intelligence. Comput. Geosci. 2022, 159, 105034. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Dou, J. Machine Learning Modeling for Spatial-Temporal Prediction of Geohazard. Sensors 2023, 23, 9262. https://doi.org/10.3390/s23229262
Ma J, Dou J. Machine Learning Modeling for Spatial-Temporal Prediction of Geohazard. Sensors. 2023; 23(22):9262. https://doi.org/10.3390/s23229262
Chicago/Turabian StyleMa, Junwei, and Jie Dou. 2023. "Machine Learning Modeling for Spatial-Temporal Prediction of Geohazard" Sensors 23, no. 22: 9262. https://doi.org/10.3390/s23229262
APA StyleMa, J., & Dou, J. (2023). Machine Learning Modeling for Spatial-Temporal Prediction of Geohazard. Sensors, 23(22), 9262. https://doi.org/10.3390/s23229262