Logistic Regression Ensemble Classifier for Intrusion Detection System in Internet of Things
Abstract
:1. Introduction
- An LREC classifier that includes the combination of AdaBoost and RF is used for performing effective classification of intrusions. The integration of AdaBoost and RF, according to the iterative ensemble approach, builds an effective classifier.
- The issue of data imbalance in the input data is avoided using the ADASYN. The ADASYN is specifically chosen because it effectively controls the network traffic with severe data imbalance. Further, the RFE is utilized for removing the feature with less information so that the prediction is enhanced.
2. Related Work
3. RFE-LREC Method
3.1. Dataset Acquisition
- The BoT-IoT dataset is generated in the IoT lab of the University of New South Wales (UNSW) based on a realistic network environment. The BoT-IoT dataset is suitably considered when concentration is on the discovery of IoT devices that are compromised or are acting in a malicious or anomalous way, often referred to as “bots.” The BoT-IoT dataset comprises network traffic information that obtains the different behaviors of IoT devices, such as sensors, smart cameras and remaining linked devices, in a controlled and simulated environment. This data comprises both normal and malicious behaviors, making it a valuable resource to train and estimate an IDS. It has 72 million records of cyberattacks comprising Denial of Service (DoS), Distributed DoS (DDoS), ransomware and reconnaissance. The raw information is available in the pcap field format with a size of 16.7 Gigabits. Further, the UNSW provides the BoT-IoT in two formats, argus and CSV. In the argus format, packets are gathered into flows according to feature vector, while the packet features and its respective classes are provided in the CSV format.
- The TON-IoT dataset was introduced by the makers of the BoT-IoT dataset to provide a comprehensive dataset that comprises normal and various attack types that threaten the industrial IoT (IIOT). The TON-IoT is created from certain current technologies such as multiple clouding layers, fog and edge. It has 22,339,021 network instances in CSV, pcap and Argus formats.
3.2. Preprocessing Using Min–Max Scaling
3.3. Oversampling Using ADASYN
- The amount of samples that are required to be synthesized is computed as denoted in Equation (2).
- amount of neighbors is computed by Euclidean distance denoted by , i.e., the ratio of majority class samples existing in the neighborhood for each minority sample. Equation (3) expresses the .
- The amount of samples required to be synthesized for each minority sample is computed in Equation (4), and then the samples are synthesized based on Equation (5).
3.4. Feature Elimination Using RFE
3.5. Classification Using LREC
3.5.1. Random Forest (RF)
- (1)
- A random sampling of training examples while creating a tree;
- (2)
- A random group of features taken while splitting the nodes.
3.5.2. AdaBoost
3.5.3. Logistic Regression
Algorithm 1: Classification using LREC |
Input: Features Output: Intrusion Attacks Classification Perform data normalization Perform data oversampling # RFE Feature selection while number of features using Equation (6) Do (check converged) is number of base learners is trained tree structure Update the distribution over the training of data End for Compute the final score for the instances of base learners Create the final score based on the meta-learner LR // logistic regression End if Repeat process Evaluate the performance metrics |
4. Results and Discussion
4.1. Performance Evaluation
4.1.1. Performance Evaluation for BoT-IoT Dataset
4.1.2. Performance Evaluation for TON-IoT Dataset
4.2. Comparative Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jeyaselvi, M.; Dhanaraj, R.K.; Sathya, M.; Memon, F.H.; Krishnasamy, L.; Dev, K.; Ziyue, W.; Qureshi, N.M.F. A highly secured intrusion detection system for IoT using EXPSO-STFA feature selection for LAANN to detect attacks. Clust. Comput. 2023, 26, 559–574. [Google Scholar] [CrossRef]
- Saba, T.; Rehman, A.; Sadad, T.; Kolivand, H.; Bahaj, S.A. Anomaly-based intrusion detection system for IoT networks through deep learning model. Comput. Electr. Eng. 2022, 99, 107810. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, P.; Wang, X. Intrusion detection for IoT based on improved genetic algorithm and deep belief network. IEEE Access 2019, 7, 31711–31722. [Google Scholar] [CrossRef]
- Hassan, I.H.; Abdullahi, M.; Aliyu, M.M.; Yusuf, S.A.; Abdulrahim, A. An improved binary manta ray foraging optimization algorithm based feature selection and random forest classifier for network intrusion detection. Intell. Syst. Appl. 2022, 16, 200114. [Google Scholar] [CrossRef]
- Vishwakarma, M.; Kesswani, N. DIDS: A Deep Neural Network based real-time Intrusion detection system for IoT. Decis. Anal. J. 2022, 5, 100142. [Google Scholar] [CrossRef]
- Siddharthan, H.; Deepa, T.; Chandhar, P. SENMQTT-SET: An intelligent intrusion detection in IoT-MQTT networks using ensemble multi cascade features. IEEE Access 2022, 10, 33095–33110. [Google Scholar] [CrossRef]
- Hanafi, A.V.; Ghaffari, A.; Rezaei, H.; Valipour, A.; Arasteh, B. Intrusion detection in Internet of things using improved binary golden jackal optimization algorithm and LSTM. Clust. Comput. 2023. [Google Scholar] [CrossRef]
- Samha, A.K.; Malik, N.; Sharma, D.; Kavitha, S.; Dutta, P. Intrusion Detection System Using Hybrid Convolutional Neural Network. Mob. Netw. Appl. 2023. [Google Scholar] [CrossRef]
- Bhavsar, M.; Roy, K.; Kelly, J.; Olusola, O. Anomaly-based intrusion detection system for IoT application. Discov. Internet Things 2023, 3, 5. [Google Scholar] [CrossRef]
- Mahadik, S.; Pawar, P.M.; Muthalagu, R. Efficient Intelligent Intrusion Detection System for Heterogeneous Internet of Things (HetIoT). J. Netw. Syst. Manag. 2023, 31, 2. [Google Scholar] [CrossRef]
- Siddiqui, A.J.; Boukerche, A. Adaptive ensembles of autoencoders for unsupervised IoT network intrusion detection. Computing 2021, 103, 1209–1232. [Google Scholar] [CrossRef]
- Nimbalkar, P.; Kshirsagar, D. Feature selection for intrusion detection system in Internet-of-Things (IoT). ICT Express 2021, 7, 177–181. [Google Scholar] [CrossRef]
- Mehedi, S.T.; Anwar, A.; Rahman, Z.; Ahmed, K.; Islam, R. Dependable intrusion detection system for IoT: A deep transfer learning based approach. IEEE Trans. Ind. Inf. 2023, 19, 1006–1017. [Google Scholar] [CrossRef]
- Ahmad, J.; Shah, S.A.; Latif, S.; Ahmed, F.; Zou, Z.; Pitropakis, N. DRaNN_PSO: A deep random neural network with particle swarm optimization for intrusion detection in the industrial Internet of things. J. King Saud Univ. -Comput. Inf. Sci. 2022, 34, 8112–8121. [Google Scholar] [CrossRef]
- Roy, S.; Li, J.; Choi, B.-J.; Bai, Y. A lightweight supervised intrusion detection mechanism for IoT networks. Future Gener. Comput. Syst. 2022, 127, 276–285. [Google Scholar] [CrossRef]
- Sarhan, M.; Layeghy, S.; Portmann, M. Towards a standard feature set for network intrusion detection system datasets. Mob. Netw. Appl. 2022, 27, 357–370. [Google Scholar] [CrossRef]
- Disha, R.A.; Waheed, S. Performance analysis of machine learning models for intrusion detection system using Gini Impurity-based Weighted Random Forest (GIWRF) feature selection technique. Cybersecurity 2022, 5, 1. [Google Scholar] [CrossRef]
- Rodríguez, E.; Valls, P.; Otero, B.; Costa, J.J.; Verdú, J.; Pajuelo, M.A.; Canal, R. Transfer-Learning-Based Intrusion Detection Framework in IoT Networks. Sensors 2022, 22, 5621. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xiao, Z.; Gu, J.; Liu, Y. A network anomaly detection algorithm based on semi-supervised learning and adaptive multiclass balancing. J. Supercomput. 2023, 79, 20445–20480. [Google Scholar] [CrossRef]
- Asgharzadeh, H.; Ghaffari, A.; Masdari, M.; Gharehchopogh, F.S. Anomaly-based intrusion detection system in the Internet of Things using a convolutional neural network and multi-objective enhanced Capuchin Search Algorithm. J. Parallel Distrib. Comput. 2023, 175, 1–21. [Google Scholar] [CrossRef]
- Banaamah, A.M.; Ahmad, I. Intrusion Detection in IoT Using Deep Learning. Sensors 2022, 22, 8417. [Google Scholar] [CrossRef]
- Lazzarini, R.; Tianfield, H.; Charissis, V. A stacking ensemble of deep learning models for IoT intrusion detection. Knowl.-Based Syst. 2023, 279, 110941. [Google Scholar] [CrossRef]
- Fatani, A.; Dahou, A.; Al-qaness, M.A.A.; Lu, S.; Abd Elaziz, M.A. Advanced Feature Extraction and Selection Approach Using Deep Learning and Aquila Optimizer for IoT Intrusion Detection System. Sensors 2021, 22, 140. [Google Scholar] [CrossRef] [PubMed]
- Zeeshan, M.; Riaz, Q.; Bilal, M.A.; Shahzad, M.K.; Jabeen, H.; Haider, S.A.; Rahim, A. Protocol-based deep intrusion detection for dos and ddos attacks using unsw-nb15 and Bot-IoT Data-Sets. IEEE Access 2022, 10, 2269–2283. [Google Scholar] [CrossRef]
- Fatani, A.; Abd Elaziz, M.; Dahou, A.; Al-Qaness, M.A.A.; Lu, S. IoT intrusion detection system using deep learning and enhanced transient search optimization. IEEE Access 2021, 9, 123448–123464. [Google Scholar] [CrossRef]
- Halim, Z.; Yousaf, M.N.; Waqas, M.; Sulaiman, M.; Abbas, G.; Hussain, M.; Ahmad, I.; Hanif, M. An effective genetic algorithm-based feature selection method for intrusion detection systems. Comput. Secur. 2021, 110, 102448. [Google Scholar] [CrossRef]
- Zhou, H.; Kang, L.; Pan, H.; Wei, G.; Feng, Y. An intrusion detection approach based on incremental long short-term memory. Int. J. Inf. Secur. 2023, 22, 433–446. [Google Scholar] [CrossRef]
- Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Turnbull, B. Towards the development of realistic botnet dataset in the Internet of things for network forensic analytics: Bot-IoT dataset. Future Gener. Comput. Syst. 2019, 100, 779–796. [Google Scholar] [CrossRef]
- Moustafa, N. A new distributed architecture for evaluating AI-based security systems at the edge: Network TON_IoT datasets. Sustain. Cities Soc. 2021, 72, 102994. [Google Scholar] [CrossRef]
Classifiers | Class | Precision (%) | Recall (%) | F1-Measure (%) | Accuracy (%) | ROC (%) | FAR (%) | TNR (%) | MCC (%) |
---|---|---|---|---|---|---|---|---|---|
RF | DDoS | 98 | 96 | 97 | 97 | 98.99 | 6.87 | 95 | 97 |
DoS | 96 | 98 | 97 | 97 | 98.99 | 6.87 | 97 | 97 | |
Reconnaissance | 98.99 | 24 | 39 | 97 | 90 | 6.87 | 55 | 95 | |
Normal | 98.99 | 97 | 98 | 97 | 90 | 6.87 | 97 | 95 | |
Theft | 98.99 | 29 | 44 | 97 | 98.99 | 6.87 | 45 | 95 | |
GNB | DDoS | 66 | 96 | 78 | 71 | 98.99 | 6.15 | 97 | 78 |
DoS | 89 | 44 | 59 | 71 | 98.99 | 6.15 | 79 | 78 | |
Reconnaissance | 03 | 90 | 06 | 71 | 50 | 6.15 | 95 | 78 | |
Normal | 89 | 21 | 33 | 71 | 98.99 | 6.15 | 44 | 78 | |
Theft | 98.99 | 57 | 73 | 71 | 98.99 | 6.15 | 67 | 78 | |
Decision Tree (Information Gain) | DDoS | 97 | 88 | 92 | 91 | 98.99 | 5.44 | 90 | 92 |
DoS | 86 | 96 | 91 | 91 | 50 | 5.44 | 99 | 92 | |
Reconnaissance | 94 | 31 | 46 | 91 | 90 | 5.44 | 55 | 92 | |
Normal | 94 | 57 | 71 | 91 | 92 | 5.44 | 76 | 92 | |
Theft | 00 | 00 | 00 | 91 | 99.99 | 5.44 | 01 | 92 | |
Decision Tree (Gini Index) | DDoS | 97 | 88 | 92 | 91 | 99.99 | 5.48 | 89 | 92 |
DoS | 86 | 97 | 91 | 91 | 99.99 | 5.48 | 98 | 92 | |
Reconnaissance | 91 | 30 | 45 | 91 | 99.99 | 5.48 | 45 | 92 | |
Normal | 95 | 59 | 73 | 91 | 90 | 5.48 | 69 | 92 | |
Theft | 00 | 00 | 00 | 91 | 99.99 | 5.48 | 02 | 92 | |
GBM | DDoS | 98.99 | 98.99 | 98.99 | 98.99 | 99.99 | 7.6 | 98 | 98 |
DoS | 98.99 | 98.99 | 98.99 | 98.99 | 99.99 | 7.6 | 98 | 98 | |
Reconnaissance | 97 | 93 | 94 | 98.99 | 50 | 7.6 | 98 | 97.99 | |
Normal | 98.99 | 98.99 | 98.99 | 98.99 | 90 | 7.6 | 98 | 97.99 | |
Theft | 98.99 | 98.99 | 98.99 | 98.99 | 99.99 | 7.6 | 98 | 98.76 | |
LREC | DDoS | 98.99 | 99.99 | 98.99 | 98.99 | 99.99 | 2.0 | 99 | 98.99 |
DoS | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 2.0 | 99 | 98.99 | |
Reconnaissance | 99 | 99.99 | 98 | 99.99 | 98 | 2.0 | 99 | 98.99 | |
Normal | 99.99 | 99.99 | 99.99 | 99.99 | 98 | 2.0 | 99 | 98.99 | |
Theft | 99.99 | 99.99 | 98 | 99.99 | 99.99 | 2.0 | 99 | 98.99 |
Classifiers | Subcategory | Precision (%) | Recall (%) | F1-Measure (%) | Accuracy (%) | ROC (%) | FAR (%) | TNR (%) | MCC (%) |
---|---|---|---|---|---|---|---|---|---|
RF | UDP | 98 | 19 | 32 | 98 | 50 | 4.2 | 22 | 96 |
TCP | 00 | 00 | 00 | 98 | 50 | 4.2 | 03 | 96 | |
Service_Scan | 99.99 | 02 | 04 | 98 | 50 | 4.2 | 03 | 96 | |
OS_Fingerprint | 00 | 00 | 00 | 98 | 98.99 | 4.2 | 02 | 96 | |
HTTP | 80 | 97 | 97 | 98 | 98.99 | 4.2 | 95 | 96 | |
Normal | 98.99 | 98.99 | 98.99 | 98 | 50 | 4.2 | 97.98 | 96 | |
Keylogging | 98.99 | 98.99 | 98.99 | 98 | 53 | 4.2 | 97.98 | 96 | |
GNB | UDP | 17 | 67 | 28 | 98 | 50 | 4.28 | 77 | 96 |
TCP | 98.99 | 50 | 67 | 98 | 98.99 | 4.28 | 65 | 96 | |
Service_Scan | 03 | 90 | 06 | 98 | 50 | 4.28 | 95 | 96 | |
OS_Fingerprint | 00 | 00 | 00 | 98 | 50 | 4.28 | 03 | 96 | |
HTTP | 83 | 20 | 33 | 98 | 98.99 | 4.28 | 33 | 96 | |
Normal | 96 | 99 | 98 | 98 | 50 | 4.28 | 97 | 96 | |
Keylogging | 98.99 | 98.99 | 98.99 | 98 | 53 | 4.28 | 97 | 96 | |
Decision Tree (Information Gain) | UDP | 88 | 76 | 82 | 99 | 50 | 7.6 | 78 | 98 |
TCP | 98.99 | 36 | 53 | 99 | 50 | 7.6 | 44 | 98 | |
Service_Scan | 95 | 34 | 50 | 99 | 50 | 7.6 | 44 | 98 | |
OS_Fingerprint | 81 | 26 | 39 | 99 | 50 | 7.6 | 45 | 98 | |
HTTP | 88 | 59 | 71 | 99 | 50 | 7.6 | 79 | 98 | |
Normal | 98 | 98.99 | 99 | 99 | 50 | 7.6 | 96.99 | 98 | |
Keylogging | 98.99 | 98.99 | 98.99 | 99 | 50 | 7.6 | 96.99 | 98 | |
Decision Tree (Gini Index) | UDP | 86 | 83 | 84 | 99 | 50 | 5.7 | 87 | 97 |
TCP | 00 | 00 | 00 | 99 | 50 | 5.7 | 02 | 97 | |
Service_Scan | 83 | 05 | 09 | 99 | 50 | 5.7 | 03 | 97 | |
OS_Fingerprint | 92 | 24 | 38 | 99 | 98.99 | 5.7 | 32 | 97 | |
HTTP | 88 | 62 | 73 | 99 | 98.99 | 5.7 | 56 | 97 | |
Normal | 98 | 100 | 99 | 99 | 98.99 | 5.7 | 98 | 97 | |
Keylogging | 98.99 | 98.99 | 98.99 | 99 | 98.99 | 5.7 | 98 | 97 | |
GBM | UDP | 98.99 | 98 | 99 | 98.99 | 50 | 4.8 | 96 | 98 |
TCP | 98.99 | 98 | 99.99 | 98.99 | 50 | 4.8 | 96 | 98 | |
Service_Scan | 99 | 93 | 96 | 98.99 | 96 | 4.8 | 92 | 98 | |
OS_Fingerprint | 93 | 93 | 93 | 98.99 | 98.99 | 4.8 | 92 | 98 | |
HTTP | 98 | 98 | 98 | 98.99 | 98.99 | 4.8 | 97 | 98 | |
Normal | 98.99 | 98.99 | 98.99 | 98.99 | 50 | 4.8 | 97 | 98 | |
Keylogging | 98.99 | 98.99 | 98.99 | 98.99 | 53 | 4.8 | 99 | 98 | |
LREC | UDP | 99.99 | 99 | 99.99 | 99.99 | 50 | 0.01 | 99 | 99 |
TCP | 95 | 99.99 | 90 | 99.99 | 50 | 0.01 | 99 | 99 | |
Service_Scan | 97 | 99.99 | 98 | 99.99 | 50 | 0.01 | 99 | 99 | |
OS_Fingerprint | 95 | 94 | 94 | 99.99 | 98.99 | 0.01 | 99 | 99 | |
HTTP | 99 | 99 | 99 | 99.99 | 98.99 | 0.01 | 99 | 99 | |
Normal | 99.99 | 99.99 | 99.99 | 99.99 | 98.99 | 0.01 | 99 | 99 | |
Keylogging | 99.99 | 99.99 | 99.99 | 99.99 | 98.99 | 0.01 | 99 | 99 |
Classifiers | Class | Precision (%) | Recall (%) | F1-Measure (%) | Accuracy (%) | ROC (%) | FAR (%) | TNR (%) | MCC (%) |
---|---|---|---|---|---|---|---|---|---|
RF | Attack | 98.99 | 98.99 | 98.99 | 98.99 | 71 | 7.0 | 97.07 | 97 |
Normal | 98.99 | 36 | 52 | 98.99 | 71 | 7.0 | 30 | 97 | |
GNB | Attack | 98.99 | 98.99 | 98.99 | 98.99 | 50 | 5.0 | 97.07 | 97 |
Normal | 03 | 90 | 06 | 98.99 | 50 | 5.0 | 88 | 97 | |
Decision Tree (Information Gain) | Attack | 98.99 | 98.99 | 98.99 | 98.99 | 50 | 4.9 | 97.07 | 97 |
Normal | 95 | 37 | 54 | 98.99 | 50 | 4.9 | 35 | 97 | |
Decision Tree (Gini Index) | Attack | 98.99 | 98.99 | 98.99 | 98.99 | 50 | 5.7 | 97.07 | 97 |
Normal | 95 | 36 | 51 | 98.99 | 50 | 5.7 | 33 | 97 | |
GBM | Attack | 98.99 | 98.99 | 98.99 | 98.99 | 50 | 5.7 | 97.07 | 97 |
Normal | 99 | 93 | 96 | 98.99 | 50 | 4.9 | 88 | 97 | |
LREC | Attack | 99.99 | 99.99 | 99.99 | 99.99 | 90 | 4.8 | 99 | 98 |
Normal | 99 | 99.99 | 98 | 99.99 | 90 | 4.8 | 99 | 98 |
Classifiers | Precision (%) | Recall (%) | F1 Measure (%) | Accuracy (%) | ROC (%) | FAR (%) | TNR (%) | MCC (%) | ET (min) | Complexity |
---|---|---|---|---|---|---|---|---|---|---|
RF | 98.99 | 66.99 | 75.5 | 98.99 | 71.00 | 7.0 | 63.53 | 97 | 20 | O (2M + N) |
GNB | 51.5 | 94.99 | 52.5 | 98.99 | 50.00 | 5.0 | 92.53 | 97 | 25 | O (M + N) |
Decision Tree (Information Gain) | 96.99 | 68.49 | 76.5 | 98.99 | 50.00 | 4.9 | 66.03 | 97 | 30 | O (M + N) |
Decision Tree (Gini Index) | 97.00 | 67.00 | 74.00 | 98.99 | 50.00 | 5.7 | 66 | 97 | 40 | O (M + N) |
GBM | 98.99 | 95.99 | 97.48 | 98.99 | 50.00 | 8.15 | 92.53 | 97 | 55 | O (M + N) |
LREC | 99.49 | 99.99 | 98.99 | 99.99 | 90.00 | 4.8 | 99 | 98 | 12 | O (M + N) |
Oversampling | Precision (%) | Recall (%) | F1 Measure (%) | Accuracy (%) | ROC (%) | FAR (%) | TNR (%) | MCC (%) |
---|---|---|---|---|---|---|---|---|
SMOTE | 95.79 | 91.98 | 96.79 | 94.58 | 94.00 | 5.7 | 89.99 | 92.78 |
ADASYN | 99.99 | 99.99 | 98.99 | 99.99 | 90.00 | 4.8 | 98.99 | 98.88 |
Feature Selection | Precision (%) | Recall (%) | F1 Measure (%) | Accuracy (%) | ROC (%) | FAR (%) | TNR (%) | MCC (%) |
---|---|---|---|---|---|---|---|---|
Chi2 | 95.00 | 94.00 | 94.00 | 94.28 | 94.00 | 7.0 | 90.00 | 93.88 |
MIG | 94.79 | 95.53 | 95.77 | 96.00 | 96.00 | 5.7 | 93.33 | 92.00 |
RFE | 99.99 | 99.99 | 98.99 | 99.99 | 90.00 | 4.8 | 97.33 | 98.88 |
Classifiers | Class | Precision (%) | Recall (%) | F1 Measure (%) | Accuracy (%) | ROC (%) | FAR (%) | TNR (%) | MCC (%) |
---|---|---|---|---|---|---|---|---|---|
RF | Attack | 98.99 | 94 | 96 | 97.02 | 96 | 5.5 | 93 | 96.72 |
Normal | 95 | 98.99 | 96 | 97.02 | 96 | 5.5 | 94 | 96.72 | |
GNB | Attack | 93 | 93 | 93 | 93.00 | 93 | 6.8 | 92 | 93.00 |
Normal | 93 | 93 | 93 | 93.00 | 93 | 6.8 | 92 | 93.00 | |
Decision Tree (Information Gain) | Attack | 98.99 | 95 | 96 | 96.06 | 95 | 5.5 | 94 | 95.86 |
Normal | 95 | 98.99 | 96 | 96.06 | 95 | 5.5 | 97.69 | 95.86 | |
Decision Tree (Gini Index) | Attack | 98.99 | 94 | 96 | 96.06 | 95 | 5.6 | 94 | 95.77 |
Normal | 95 | 98.99 | 96 | 96.06 | 95 | 5.6 | 97.69 | 95.77 | |
GBM | Attack | 95 | 94 | 96 | 96.66 | 96 | 5.6 | 93 | 95.77 |
Normal | 95 | 99 | 96 | 96.66 | 96 | 5.5 | 98 | 95.77 | |
LREC | Attack | 98.99 | 98.77 | 98.77 | 98.99 | 98.99 | 5.2 | 96 | 97.88 |
Normal | 99 | 98.77 | 98.77 | 98.99 | 98.99 | 5.2 | 97 | 97.88 |
Classifiers | Precision (%) | Recall (%) | F1 Measure (%) | Accuracy (%) | ROC (%) | FAR (%) | TNR (%) | MCC (%) | ET (min) | Complexity |
---|---|---|---|---|---|---|---|---|---|---|
RF | 96.99 | 96.49 | 96 | 97.02 | 96 | 5.5 | 93.5 | 96.72 | 20 | O (2M + N) |
GNB | 95 | 96.5 | 96 | 96.66 | 96 | 5.55 | 92 | 93.00 | 25 | O (M + N) |
Decision Tree (Information Gain) | 93 | 93 | 93 | 93 | 93 | 6.8 | 94.45 | 95.86 | 30 | O (M + N) |
Decision Tree (Gini Index) | 96.99 | 96.99 | 96 | 96.06 | 95 | 5.5 | 94.45 | 95.77 | 40 | O (M + N) |
GBM | 96.99 | 96.99 | 96 | 96.06 | 95 | 5.6 | 95.5 | 95.77 | 55 | O (M + N) |
LREC | 98.99 | 98.77 | 98.77 | 98.88 | 98.99 | 5.2 | 96.5 | 97.88 | 12 | O (M + N) |
Oversampling | Precision (%) | Recall (%) | F1 Measure (%) | Accuracy (%) | ROC (%) | FAR (%) | TNR (%) | MCC (%) |
---|---|---|---|---|---|---|---|---|
SMOTE | 96.87 | 96.00 | 95.97 | 94.96 | 95.26 | 5.8 | 94.00 | 92.99 |
ADASYN | 98.99 | 98.77 | 98.77 | 98.88 | 98.99 | 5.2 | 94.79 | 96.89 |
Feature Selection | Precision (%) | Recall (%) | F1 Measure (%) | Accuracy (%) | ROC (%) | FAR (%) | TNR (%) | MCC (%) |
---|---|---|---|---|---|---|---|---|
Chi2 | 97.95 | 96.70 | 95.00 | 96.99 | 96.00 | 5.4 | 95.70 | 95.88 |
Mutual information gain | 96.66 | 97.28 | 97.65 | 95.66 | 97.00 | 5.5 | 94.28 | 95.88 |
RFE | 98.99 | 98.77 | 98.77 | 98.88 | 98.99 | 5.2 | 97.77 | 96.98 |
Methods | Precision (%) | Recall (%) | F1 Measure (%) | Accuracy (%) |
---|---|---|---|---|
TL-IDS [18] | 98.22 | 97.89 | 97.97 | 97.89 |
LSTM [21] | 99.7 | 100 | 99.8 | 99.8 |
RFE-LREC | 99.99 | 99.99 | 98.99 | 99.99 |
Methods | F1 Measure (%) | Accuracy (%) |
---|---|---|
NetFlow [16] | 99 | 97.86 |
RFE-LREC | 98.77 | 98.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chalichalamala, S.; Govindan, N.; Kasarapu, R. Logistic Regression Ensemble Classifier for Intrusion Detection System in Internet of Things. Sensors 2023, 23, 9583. https://doi.org/10.3390/s23239583
Chalichalamala S, Govindan N, Kasarapu R. Logistic Regression Ensemble Classifier for Intrusion Detection System in Internet of Things. Sensors. 2023; 23(23):9583. https://doi.org/10.3390/s23239583
Chicago/Turabian StyleChalichalamala, Silpa, Niranjana Govindan, and Ramani Kasarapu. 2023. "Logistic Regression Ensemble Classifier for Intrusion Detection System in Internet of Things" Sensors 23, no. 23: 9583. https://doi.org/10.3390/s23239583
APA StyleChalichalamala, S., Govindan, N., & Kasarapu, R. (2023). Logistic Regression Ensemble Classifier for Intrusion Detection System in Internet of Things. Sensors, 23(23), 9583. https://doi.org/10.3390/s23239583