Novel Multi-View RGB Sensor for Continuous Motion Analysis in Kinetic Chain Exercises: A Pilot Study for Simultaneous Validity and Intra-Test Reliability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measurements
2.3. VICON® Motion Capture System
2.4. Multi-View Image-Based Motion Analysis System (4DEYE®)
2.5. Procedure
2.6. Statistical Analysis
3. Results
3.1. Analysis of Side Dip
3.2. Analysis of the YBT
3.3. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tashman, S.; Anderst, W. In-vivo measurement of dynamic joint motion using high speed biplane radiography and CT: Application to canine ACL deficiency. J. Biomech. Eng. 2003, 125, 238–245. [Google Scholar] [CrossRef] [PubMed]
- McDonald, C.P.; Bachison, C.C.; Chang, V.; Bartol, S.W.; Bey, M.J. Three-dimensional dynamic in vivo motion of the cervical spine: Assessment of measurement accuracy and preliminary findings. Spine J. 2010, 10, 497–504. [Google Scholar] [CrossRef]
- Roggio, F.; Ravalli, S.; Maugeri, G.; Bianco, A.; Palma, A.; Di Rosa, M.; Musumeci, G. Technological advancements in the analysis of human motion and posture management through digital devices. World J. Orthop. 2021, 12, 467. [Google Scholar] [CrossRef] [PubMed]
- Inokuchi, H.; Tojima, M.; Mano, H.; Ishikawa, Y.; Ogata, N.; Haga, N. Neck range of motion measurements using a new three-dimensional motion analysis system: Validity and repeatability. Eur. Spine J. 2015, 24, 2807–2815. [Google Scholar] [CrossRef]
- Noh, D.K.; Lee, N.G.; You, J.H. A novel spinal kinematic analysis using X-ray imaging and VICON® motion analysis: A case study. Biomed. Mater. Eng. 2014, 24, 593–598. [Google Scholar] [CrossRef] [PubMed]
- Alcañiz Raya, M.; Marín-Morales, J.; Minissi, M.E.; Teruel Garcia, G.; Abad, L.; Chicchi Giglioli, I.A. Machine Learning and Virtual Reality on Body Movements’ Behaviors to Classify Children with Autism Spectrum Disorder. J. Clin. Med. 2020, 9, 1260. [Google Scholar] [CrossRef]
- Hamilton, R.I.; Williams, J.; OATech Network+ Consortium; Holt, C. Biomechanics beyond the lab: Remote technology for osteoarthritis patient data—A scoping review. Front. Rehabil. Sci. 2022, 3, 1005000. [Google Scholar] [CrossRef]
- Peters, D.M.; O’Brien, E.S.; Kamrud, K.E.; Roberts, S.M.; Rooney, T.A.; Thibodeau, K.P.; Balakrishnan, S.; Gell, N.; Mohapatra, S. Utilization of wearable technology to assess gait and mobility post-stroke: A systematic review. J. Neuroeng. Rehabil. 2021, 18, 67. [Google Scholar] [CrossRef]
- Dingenen, B.; Barton, C.; Janssen, T.; Benoit, A.; Malliaras, P. Test-retest reliability of two-dimensional video analysis during running. Phys. Ther. Sport 2018, 33, 40–47. [Google Scholar] [CrossRef]
- Musha, S.; Kobayashi, D.; Takaku, Y.; Hirono, Y.; Otsu, T.; Fujii, N. Reliability and validity of a deep learning algorithm based markerless motion capture system in measuring squats. ISBS Proc. Arch. 2022, 40, 507. [Google Scholar]
- Peart, D.J.; Balsalobre-Fernández, C.; Shaw, M.P. Use of mobile applications to collect data in sport, health, and exercise science: A narrative review. J. Strength Cond. Res. 2019, 33, 1167–1177. [Google Scholar] [CrossRef]
- Colyer, S.L.; Evans, M.; Cosker, D.P.; Salo, A.I. A review of the evolution of vision-based motion analysis and the integration of advanced computer vision methods towards developing a markerless system. Sports Med. Open 2018, 4, 1–5. [Google Scholar] [CrossRef]
- Lygerakis, F.; Tsitos, A.C.; Dagioglou, M.; Makedon, F.; Karkaletsis, V. Evaluation of 3D markerless pose estimation accuracy using openpose and depth information from a single RGB-D camera. In Proceedings of the 13th ACM International Conference on PErvasive Technologies Related to Assistive Environments, New York, NY, USA, 30 June–3 July 2020; pp. 1–6. [Google Scholar]
- Balta, D.; Kuo, H.; Wang, J.; Porco, I.G.; Morozova, O.; Schladen, M.M.; Cereatti, A.; Lum, P.S.; Della Croce, U. Characterization of Infants’ General Movements Using a Commercial RGB-Depth Sensor and a Deep Neural Network Tracking Processing Tool: An Exploratory Study. Sensors 2022, 22, 7426. [Google Scholar] [CrossRef]
- Albani, G.; Ferraris, C.; Nerino, R.; Chimienti, A.; Pettiti, G.; Parisi, F.; Ferrari, G.; Cau, N.; Cimolin, V.; Azzaro, C.; et al. An Integrated Multi-Sensor Approach for the Remote Monitoring of Parkinson’s Disease. Sensors 2019, 19, 4764. [Google Scholar] [CrossRef] [PubMed]
- Pantzar-Castilla, E.; Cereatti, A.; Figari, G.; Valeri, N.; Paolini, G.; Della Croce, U.; Magnuson, A.; Riad, J. Knee joint sagittal plane movement in cerebral palsy: A comparative study of 2-dimensional markerless video and 3-dimensional gait analysis. Acta Orthop. 2018, 89, 656–661. [Google Scholar] [CrossRef] [PubMed]
- Ellenbecker, T.S.; Davies, G.J. Closed kinetic chain exercise: A comprehensive guide to multiple joint exercise. J. Chiropr. Med. 2022, 1, 200. [Google Scholar]
- Akuthota, V.; Herring, S.A. Nerve and Vascular Injuries in Sports Medicine; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Bynum, E.B.; Barrack, R.L.; Alexander, A.H. Open versus closed chain kinetic exercises after anterior cruciate ligament reconstruction. A prospective randomized study. Am. J. Sports Med. 1995, 23, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Hooren, B.V.; Pecasse, N.; Meijer, K.; Maria, J.; Essers, N. The accuracy of markerless motion capture combined with com-puter vision techniques for measuring running kinematics. Scand. J. Med. Sci. Sports 2023, 33, 966–978. [Google Scholar] [PubMed]
- Michael, D.E.; Karmela, K.J.; Lemmens, T. Helsinki declaration. BMJ 2007, 335, 624–625. [Google Scholar]
- Wu, G.; van der Helm, F.C.T.; Veeger, H.E.J.D.; Makhsous, M.; Van Roy, P.; Anglin, C.; Nagels, J.; Karduna, A.R.; McQuade, K.; Wang, X.; et al. ISB Recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: Shoulder, elbow, wrist and hand. J. Biomech. 2005, 38, 981–992. [Google Scholar] [CrossRef] [PubMed]
- Bradski, G.; Kaehler, A. OpenCV. Dr. Dobb’s J. Softw. Tools 2000, 3, 122–125. [Google Scholar]
- Fullam, K.; Caulfield, B.; Coughlan, G.F.; Delahunt, E. Kinematic analysis of selected reach directions of the Star Excursion Balance Test compared with the Y-Balance Test. J. Sport Rehabil. 2014, 23, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Westrick, R.B.; Miller, J.M.; Carow, S.D.; Gerber, J.P. Exploration of the Y-Balance Test for assessment of upper quarter closed kinetic chain performance. Int. J. Sports Phys. Ther. 2012, 7, 139–147. [Google Scholar]
- Jewiss, D.; Ostman, C.; Smart, N. Open versus Closed Kinetic Chain Exercises following an Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-Analysis. J. Sports Med. 2017, 2017, 4721548. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Hidalgo, G.; Simon, T.; Wei, S.E.; Sheikh, Y. OpenPose: Realtime multi-person 2D pose estimation using part affinity fields. IEEE TPAMI 2021, 43, 172–186. [Google Scholar] [CrossRef] [PubMed]
- Overend, T.; Anderson, C.; Sawant, A.; Perryman, B.; Locking-Cusolito, H. Relative and absolute reliability of physical function measures in people with end-stage renal disease. Physiother. Can. 2010, 62, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, S.W.; Teyhen, D.S.; Lorenson, C.L.; Warren, R.L.; Koreerat, C.M.; Straseske, C.A.; Childs, J.D. Y-balance test: A reliability study involving multiple raters. Mil. Med. 2013, 178, 1264–1270. [Google Scholar] [CrossRef]
- Plisky, P.J.; Rauh, M.J.; Kaminski, T.W. Underwood FB. Star excursion balance test as a predictor of lower extremity injury in high school basketball players. J. Orthop. Sports Phys. Ther. 2006, 36, 911–919. [Google Scholar] [CrossRef]
- Butler, R.J.; Lehr, M.E.; Fink, M.L.; Kiesel, K.B.; Plisky, P.J. Dynamic balance per-formance and noncontact lower extremity injury in college football players. Sports Health 2013, 5, 417–422. [Google Scholar] [CrossRef]
- Plisky, P.J.; Gorman, P.P.; Butler, R.J.; Kiesel, K.B.; Underwood, F.B.; Elkins, B. The reliability of an instrumented device for measuring components of the star excursion balance test. N. Am. J. Sports Phys. Ther. 2009, 4, 92–99. [Google Scholar]
Movement | Left | Right | |||||||
---|---|---|---|---|---|---|---|---|---|
Body Regions | Participants | M | SD | ICC(2.1) | 95% CI | M | SD | ICC(2.1) | 95% CI |
Side dip (Trunk side-bending) | 1 | 14.48 | 11.27 | 0.895 | 0.843–0.929 | −29.61 | 10.40 | 0.985 | 0.978–0.990 |
2 | 43.50 | 18.13 | 0.969 | 0.954–0.979 | −39.30 | 20.30 | 0.978 | 0.968–0.985 | |
3 | 34.30 | 11.67 | 0.996 | 0.993–0.997 | −23.70 | 8.78 | 0.938 | 0.909–0.959 | |
4 | 28.45 | 12.93 | 0.966 | 0.950–0.977 | −29.18 | 14.76 | 0.974 | 0.961–0.982 | |
5 | 18.72 | 9.28 | 0.966 | 0.979–0.990 | −21.76 | 10.78 | 0.974 | 0.962–0.983 | |
Y-balance (Hip extension) | 1 | 27.54 | 5.30 | 0.973 | 0.960–0.982 | 35.21 | 12.64 | 0.859 | 0.791–0.905 |
2 | 30.23 | 22.58 | 0.949 | 0.924–0.966 | 30.68 | 15.12 | 0.990 | 0.984–0.993 | |
3 | 13.33 | 4.11 | 0.879 | 0.821–0.919 | 16.46 | 4.45 | 0.833 | 0.752–0.888 | |
4 | 23.04 | 9.95 | 0.678 | 0.521–0.783 | 11.37 | 13.07 | 0.887 | 0.832–0.924 | |
5 | 45.96 | 18.98 | 0.886 | 0.831–0.923 | 43.76 | 14.52 | 0.924 | 0.887–0.949 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, J.; Choi, H.; Lee, H.; Lee, J.; Kim, H.-D. Novel Multi-View RGB Sensor for Continuous Motion Analysis in Kinetic Chain Exercises: A Pilot Study for Simultaneous Validity and Intra-Test Reliability. Sensors 2023, 23, 9635. https://doi.org/10.3390/s23249635
Ahn J, Choi H, Lee H, Lee J, Kim H-D. Novel Multi-View RGB Sensor for Continuous Motion Analysis in Kinetic Chain Exercises: A Pilot Study for Simultaneous Validity and Intra-Test Reliability. Sensors. 2023; 23(24):9635. https://doi.org/10.3390/s23249635
Chicago/Turabian StyleAhn, Junghoon, Hongtaek Choi, Heehwa Lee, Jinyoung Lee, and Hyeong-Dong Kim. 2023. "Novel Multi-View RGB Sensor for Continuous Motion Analysis in Kinetic Chain Exercises: A Pilot Study for Simultaneous Validity and Intra-Test Reliability" Sensors 23, no. 24: 9635. https://doi.org/10.3390/s23249635
APA StyleAhn, J., Choi, H., Lee, H., Lee, J., & Kim, H. -D. (2023). Novel Multi-View RGB Sensor for Continuous Motion Analysis in Kinetic Chain Exercises: A Pilot Study for Simultaneous Validity and Intra-Test Reliability. Sensors, 23(24), 9635. https://doi.org/10.3390/s23249635