Modeling of Rapid Pam Systems Based on Electrothermal Micromirror for High-Resolution Facial Angiography
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Design of PAM System
2.2. Electrothermal Micromirror
2.2.1. The Design of Micromirror
2.2.2. The Electrothermal Actuator
2.2.3. Finite Element Simulation of Micromirror
2.3. Scanning
3. Results
3.1. Stable State Response
3.2. Transient Response
3.3. Imaging
3.3.1. Driving Method
3.3.2. Imaging Result
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bowen, T. Radiation-Induced Thermoacoustic Soft Tissue Imaging; IEEE: Piscataway, NJ, USA, 1981; pp. 817–822. [Google Scholar]
- Bi, R.; Balasundaram, G.; Jeon, S.; Kim, C.; Tay, H.C.; Olivo, M.; Pu, Y. A fast MEMS scanning photoacoustic microscopy system and its application in glioma study. Photons Plus Ultrasound: Imaging Sens. 2018, 10494, 104942I. [Google Scholar] [CrossRef]
- Huang, D.; Huang, Y.; Qiu, Q.; Wang, K.; Li, Z.; Yao, Y.; Liu, G.; Zhao, Q.; Chen, X. Three-dimensional label-free imaging of mammalian yolk sac vascular remodeling with optical resolution photoacoustic microscopy. Photoacoustics 2019, 17, 100152. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, L.; Yu, T.; Zhao, Q.; Zhou, C.; Chai, X. Vascular tree extraction for photoacoustic microscopy and imaging of cat primary visual cortex. J. Biophotonics 2016, 10, 780–791. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.Y.; Jeon, S.; Baik, J.W.; Cho, S.H.; Kim, C. Super-resolution localization photoacoustic microscopy using intrinsic red blood cells as contrast absorbers. Light. Sci. Appl. 2019, 8, 103. [Google Scholar] [CrossRef] [Green Version]
- Mallidi, S.; Luke, G.P.; Emelianov, S. Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance. Trends Biotechnol. 2011, 29, 213–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, H.; Chen, Q.; Qi, W.; Chen, X.; Xi, L. In vivo study of rat cortical hemodynamics using a stereotaxic-apparatus-compatible photoacoustic microscope. J. Biophotonics 2018, 11, e201800067. [Google Scholar] [CrossRef]
- Hu, S.; Maslov, K.; Wang, L.V. In vivo functional chronic imaging of a small animal model using optical-resolution photoacoustic microscopy. Med. Phys. 2009, 36, 2320–2323. [Google Scholar] [CrossRef] [Green Version]
- Yao, L.; Xi, L.; Jiang, H. Photoacoustic computed microscopy. Sci. Rep. 2014, 4, 4960. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Li, Y.; Yu, Y.; Derouin, K.; Qin, Y.; Nguyen, V.P.; Xia, X.; Wang, X.; Paulus, Y.M. Simultaneous photoacoustic microscopy, spectral-domain optical coherence tomography, and fluorescein microscopy multi-modality retinal imaging. Photoacoustics 2020, 20, 100194. [Google Scholar] [CrossRef]
- Hajireza, P.; Shi, W.; Zemp, R.J. Real-time handheld optical-resolution photoacoustic microscopy. Opt. Express 2011, 19, 20097–20102. [Google Scholar] [CrossRef]
- Ma, H.; Cheng, Z.; Wang, Z.; Zhang, W.; Yang, S. Switchable optical and acoustic resolution photoacoustic dermoscope dedicated into in vivo biopsy-like of human skin. Appl. Phys. Lett. 2020, 116, 073703. [Google Scholar] [CrossRef]
- Zeng, L.; Liu, G.; Yang, D.; Ji, X. Portable optical-resolution photoacoustic microscopy with a pulsed laser diode excitation. Appl. Phys. Lett. 2013, 102, 053704. [Google Scholar] [CrossRef]
- Li, Y.; Lin, R.; Liu, C.; Chen, J.; Liu, H.; Zheng, R.; Gong, X.; Song, L. In vivo photoacoustic/ultrasonic dual-modality endoscopy with a miniaturized full field-of-view catheter. J. Biophotonics 2018, 11, e201800034. [Google Scholar] [CrossRef] [PubMed]
- Cavigli, L.; Centi, S.; Borri, C.; Tortoli, P.; Panettieri, I.; Streit, I.; Ciofini, D.; Magni, G.; Rossi, F.; Siano, S.; et al. 1064-nm-resonant gold nanorods for photoacoustic theranostics within permissible exposure limits. J. Biophotonics 2019, 12, e201900082. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Guo, H.; Jin, T.; Qi, W.; Xie, H.; Xi, L. Ultracompact high-resolution photoacoustic microscopy. Opt. Lett. 2018, 43, 1615–1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, L.; Zhang, P.; Xu, S.; Shi, J.; Li, L.; Yao, J.; Wang, L.; Zou, J.; Wang, L.V. Handheld optical-resolution photoacoustic microscopy. J. Biomed. Opt. 2016, 22, 041002. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Kim, J.Y.; Lee, C.; Jeon, S.; Lim, G.; Kim, C. Handheld Photoacoustic Microscopy Probe. Sci. Rep. 2017, 7, 13359. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Wang, L.; Yang, J.-M.; Gao, L.S.; Maslov, K.; Wang, L.; Huang, C.-H.; Zou, J. Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror. J. Biomed. Opt. 2012, 17, 080505. [Google Scholar] [CrossRef]
- Wang, K.; Li, C.; Chen, R.; Shi, J. Recent advances in high-speed photoacoustic microscopy. Photoacoustics 2021, 24, 100294. [Google Scholar] [CrossRef]
- Yang, J.; Gong, L.; Xu, X.; Hai, P.; Shen, Y.; Suzuki, Y.; Wang, L.V. Motionless volumetric photoacoustic microscopy with spatially invariant resolution. Nat. Commun. 2017, 8, 780. [Google Scholar] [CrossRef] [Green Version]
- Maslov, K.; Zhang, H.F.; Wang, L.V. Portable Real-Time Photoacoustic Microscopy; Proceedings of SPIE; The International Society for Optical Engineering: Bellingham, WA, USA, 2007; Volume 6437. [Google Scholar]
- Qi, W.; Chen, Q.; Guo, H.; Xie, H.; Xi, L. Miniaturized Optical Resolution Photoacoustic Microscope Based on a Microelectromechanical Systems Scanning Mirror. Micromachines 2018, 9, 288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Watkins, C.; Xie, H. MEMS Mirrors for LiDAR: A Review. Micromachines 2020, 11, 456. [Google Scholar] [CrossRef] [PubMed]
- Pengwang, E.; Rabenorosoa, K.; Rakotondrabe, M.; Andreff, N. Scanning Micromirror Platform Based on MEMS Technology for Medical Application. Micromachines 2016, 7, 24. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Qin, W.; Qi, W.; Xi, L. Progress of clinical translation of handheld and semi-handheld photoacoustic imaging. Photoacoustics 2021, 22, 100264. [Google Scholar] [CrossRef] [PubMed]
- Todd, S.T.; Jain, A.; Qu, H.; Xie, H. A multi-degree-of-freedom micromirror utilizing inverted-series-connected bimorph actuators. J. Opt. A Pure Appl. Opt. 2006, 8, S352–S359. [Google Scholar] [CrossRef] [Green Version]
- Jia, K.; Pal, S.; Xie, H. An Electrothermal Tip–Tilt–Piston Micromirror Based on Folded Dual S-Shaped Bimorphs. J. Microelectromechanical Syst. 2009, 18, 1004–1015. [Google Scholar] [CrossRef]
- Hosseinaee, Z.; Le, M.; Bell, K.; Reza, P.H. Towards non-contact photoacoustic imaging [review]. Photoacoustics 2020, 20, 100207. [Google Scholar] [CrossRef]
- Jeon, S.; Kim, J.; Lee, D.; Baik, J.W.; Kim, C. Review on practical photoacoustic microscopy. Photoacoustics 2019, 15, 100141. [Google Scholar] [CrossRef]
- Celani Sergio, A. Classical modal de morgan algebras. Stud. Log. 2011, 98, 251–266. [Google Scholar] [CrossRef]
- Niesten, M.; Masood, T.; Miller, J.; Tauscher, J. Scanning laser beam displays based on a 2D MEMS. In Optics, Photonics, and Digital Technologies for Multimedia Applications; SPIE: Bellingham, WA, USA; Volume 7723, pp. 246–255. [CrossRef]
- Soga, S.; Pomahac, B.; Wake, N.; Schultz, K.; Prior, R.; Kumamaru, K.; Steigner, M.; Mitsouras, D.; Signorelli, J.; Bueno, E.; et al. CT angiography for surgical planning in face transplantation candidates. Am. J. Neuroradiol. 2012, 34, 1873–1881. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Jia, Y.; Gao, S.S.; Lumbroso, B.; Rispoli, M. Optical coherence tomography angiography using the optovue device. OCT Angiogr. Retin. Macular Dis. 2016, 56, 6–12. [Google Scholar] [CrossRef]
- May, A.; Büchel, C.; Turner, R.; Goadsby, P.J. Magnetic resonance angiography in facial and other pain: Neurovascular mechanisms of trigeminal sensation. J. Cereb. Blood Flow Metab. 2001, 21, 1171–1176. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Y.; Wang, Y.; Liang, T.; Peng, Z.; He, L.; Wang, Z. Modeling of Rapid Pam Systems Based on Electrothermal Micromirror for High-Resolution Facial Angiography. Sensors 2023, 23, 2592. https://doi.org/10.3390/s23052592
Xia Y, Wang Y, Liang T, Peng Z, He L, Wang Z. Modeling of Rapid Pam Systems Based on Electrothermal Micromirror for High-Resolution Facial Angiography. Sensors. 2023; 23(5):2592. https://doi.org/10.3390/s23052592
Chicago/Turabian StyleXia, Yuanlin, Yujie Wang, Tianxiang Liang, Zhen Peng, Liang He, and Zhuqing Wang. 2023. "Modeling of Rapid Pam Systems Based on Electrothermal Micromirror for High-Resolution Facial Angiography" Sensors 23, no. 5: 2592. https://doi.org/10.3390/s23052592
APA StyleXia, Y., Wang, Y., Liang, T., Peng, Z., He, L., & Wang, Z. (2023). Modeling of Rapid Pam Systems Based on Electrothermal Micromirror for High-Resolution Facial Angiography. Sensors, 23(5), 2592. https://doi.org/10.3390/s23052592