Single VDGA-Based Mixed-Mode Electronically Tunable First-Order Universal Filter
Abstract
:1. Introduction
- (1)
- The design of a novel first-order mixed-mode universal filter capable of realizing all three standard first-order filter functions and operating in all four operation modes with one active element and two passive elements;
- (2)
- The realization of three filter responses in all four possible modes utilizing the same circuit configuration;
- (3)
- The use of only grounded passive elements, except for HP, and AP filter functions in VM and TAM modes capable of absorbing parasitic elements;
- (4)
- The proposed filter has an electronically adjustable pole frequency that has no effect on the passband gain of its responses;
- (5)
- The practical implementation of the proposed filter using commercially available IC type is suggested;
- (6)
- The performance of the proposed filter is proven through numerical simulations and hardware experiments.
2. Proposed Mixed-Mode First-Order Filter Configuration
- (a)
- VM filter
- (i)
- With vin = vin1 (input voltage) and vin2 = 0 (grounded), the following LP filter response is obtained from the vo(VM) terminal:
- (ii)
- With vin = vin2 and vin1 = 0, the HP response is obtained as:
- (iii)
- With vin = vin1 = vin2 and gmBR = 1, the AP response is obtained as:
- (b)
- TAM filter
- (iv)
- With vin = vin1 and vin2 = 0, the LP filter in TAM is obtained from the io(TAM) terminal, as given by:
- (v)
- With vin = vin2 and vin1 = 0, the HP filter is realized as:
- (vi)
- With vin = vin1 = vin2 and gmBR = 1, the AP filter is realized as:
- (c)
- CM filter
- (vii)
- With iin = iin1 (input current) and iin2 = 0, the LP current filter response is obtained from the io(CM) terminal:
- (viii)
- With iin = iin2 and iin1 = 0, the HP current response is obtained as:
- (ix)
- With iin = iin1 = iin2 and gmAR = 1, the AP current response is obtained as:
- (d)
- TIM filter
- (x)
- With iin = iin1 and iin2 = 0, the following TIM LP filter is realized at the vo(TIM) output terminal:
- (xi)
- With iin = iin2 and iin1 = 0, the TIM HP filter is realized as:
- (xii)
- With iin = iin1 = iin2 and gmAR = 1, the TIM AP filter is realized as:
3. Effect of Finite Tracking Errors
4. Effect of Parasitic Elements
5. Design and Simulation Verification
6. Experiment-Based Validation
7. Application to a Dual-Mode Quadrature Oscillator
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shah, N.A.; Iqbal, S.Z.; Parveen, B. Simple first-order multifunction filter. Indian J. Pure Appl. Phys. 2004, 42, 854–856. [Google Scholar]
- Maheshwari, S.; Khan, I.A.; Mohan, J. Grounded capacitor first-order filters including canonical forms. J. Circuits Syst. Comput. 2006, 15, 289–300. [Google Scholar] [CrossRef]
- Khan, I.A.; Beg, P.; Ahmed, M.T. First order current mode filters and multiphase sinusoidal oscillators using CMOS MOCCIIs. Arab. J. Sci. Eng. 2007, 32, 119–126. [Google Scholar] [CrossRef]
- Horng, J.W. High input impedance first-order allpass, highpass and lowpass filters with grounded capacitor using single DVCC. Indian J. Eng. Mater. Sci. 2009, 17, 175–178. [Google Scholar]
- Horng, J.W. DVCCs based high input impedance voltage-mode first-order allpass, highpass and lowpass filters employing grounded capacitor and resistor. Radioengineering 2010, 19, 653–656. [Google Scholar]
- Kamat, D.V.; Mohan, P.V.A.; Prabhu, K.G. Novel first-order and second-order current-mode filters using multiple-output operational transconductance amplifiers. Circuits Syst. Signal Process. 2010, 29, 553–576. [Google Scholar] [CrossRef]
- Beg, P.; Siddiqi, M.A.; Ansari, M.S. Multi output filter and four phase sinusoidal oscillator using CMOS DX-MOCCII. Int. J. Electron. 2011, 98, 1185–1198. [Google Scholar] [CrossRef]
- Horng, J.W.; Hou, C.L.; Tseng, C.Y.; Chang, R.; Yang, D.Y. Cascadable current-mode first-order and second-order multifunction filters employing grounded capacitors. Act. Passiv. Electron. Components 2012, 2012, 261075. [Google Scholar] [CrossRef]
- Chen, H.P. DVCC-based first-order filter with grounded capacitor. Int. J. Inf. Electron. Eng. 2012, 2, 50–54. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.A.; Nahhas, A.M. Reconfigurable voltage mode first order multifunctional filter using single low voltage digitally controlled CMOS CCII. Int. J. Comput. Appl. 2012, 45, 37–40. [Google Scholar] [CrossRef] [Green Version]
- Pal, R.; Tiwari, R.C.; Pandey, R.; Pandey, N. Single CDBA based current mode first order multifunction filter. Int. J. Eng. Sci. Technol. 2014, 6, 444–451. [Google Scholar]
- Yuce, E.; Minaei, S. A First-order fully cascadable current-mode universal filter composed of dual output CCIIs and a grounded capacitor. J. Circuits Syst. Comput. 2016, 25, 1650042. [Google Scholar] [CrossRef]
- Safari, L.; Yuce, E.; Minaei, S. A new ICCII based resistor-less current-mode first-order universal filter with electronic tuning capability. Microelectron. J. 2017, 67, 101–110. [Google Scholar] [CrossRef]
- Kumar, A.; Paul, S.K. Current mode first order universal filter and multiphase sinusoidal oscillator. AEU—Int. J. Electron. Commun. 2017, 81, 37–49. [Google Scholar] [CrossRef]
- Tarunkumar, H.; Ranjan, A.; Pheiroijam, N.M. First order and second order universal filter using four terminal floating nullor. Int. J. Eng. Technol. 2018, 7, 192–198. [Google Scholar]
- Abaci, A.; Yuce, E. Voltage-mode first-order universal filter realizations based on subtractors. AEU—Int. J. Electron. Commun. 2018, 90, 140–146. [Google Scholar] [CrossRef]
- Agrawal, D.; Maheshwari, S. An active-C current-mode universal first-order filter and oscillator. J. Circuits Syst. Comput. 2019, 28, 1950219. [Google Scholar] [CrossRef]
- Jaikla, W.; Talabthong, P.; Siripongdee, S.; Supavarasuwat, P.; Suwanjan, P.; Chaichana, A. Electronically controlled voltage mode first order multifunction filter using low-voltage low-power bulk-driven OTAs. Microelectron. J. 2019, 91, 22–35. [Google Scholar] [CrossRef]
- Chaturvedi, B.; Kumar, A. Electronically tunable first-order filters and dual-mode multiphase oscillator. Circuits Syst. Signal Process. 2019, 38, 2–25. [Google Scholar] [CrossRef]
- Chaturvedi, B.; Kumar, A.; Mohan, J. Low voltage operated current-mode first-order universal filter and sinusoidal oscillator suitable for signal processing applications. AEU—Int. J. Electron. Commun. 2019, 99, 110–118. [Google Scholar] [CrossRef]
- Chaturvedi, B.; Mohan, J.; Jitender; Kumar, A. Resistorless realization of first-order current mode universal filter. Radio Sci. 2020, 55, 1–10. [Google Scholar] [CrossRef]
- Chaturvedi, B.; Mohan, J.; Kumar, A.; Pal, K. Current-mode first-order universal filter and its voltage-mode transformation. J. Circuits Syst. Comput. 2020, 29, 2050149. [Google Scholar] [CrossRef]
- Yuce, E.; Minaei, S. A new first-order universal filter consisting of two ICCII+ s and a grounded capacitor. AEU—Int. J. Electron. Commun. 2021, 137, 153802. [Google Scholar] [CrossRef]
- Jaikla, W.; Buakhong, U.; Siripongdee, S.; Khateb, F.; Sotner, R.; Silapan, P.; Suwanjan, P.; Chaichana, A. Single commercially available ic-based electronically controllable voltage-mode first-order multifunction filter with complete standard functions and low output impedance. Sensors 2021, 21, 7376. [Google Scholar] [CrossRef]
- Raj, A.; Bhaskar, D.R.; Senani, R.; Kumar, P. Extension of recently proposed two-CFOA-GC all pass filters to the realisation of first order universal active filters. AEU—Int. J. Electron. Commun. 2022, 146, 154119. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, S.; Elkamchouchi, D.H.; Urooj, S. Fully Differential Current-Mode Configuration for the Realization of First-Order Filters with Ease of Cascadability. Electronics 2022, 11, 2072. [Google Scholar] [CrossRef]
- Raj, A. Mixed-mode electronically-tunable first-order universal filter structure employing operational transconductance amplifiers. J. Circuits Syst. Comput. 2022, 31, 2250234. [Google Scholar] [CrossRef]
- Satansup, J.; Tangsrirat, W. CMOS realization of voltage differencing gain amplifier (VDGA) and its application to biquad filter. Indian J. Eng. Mater. Sci. 2013, 20, 457–464. [Google Scholar]
- Channumsin, O.; Tangsrirat, W. Compact electronically tunable quadrature oscillator using single voltage differencing gain amplifier (VDGA) and all grounded passive elements. Turk. J. Electr. Eng. Comput. Sci. 2017, 25, 2686–2695. [Google Scholar] [CrossRef]
- Taskiran, Z.G.C.; Sedef, H.; Anday, F. Voltage differencing gain amplifier-based nth-order low-pass voltage-mode filter. J. Circuit. Syst. Comp. 2018, 27, 1850089. [Google Scholar] [CrossRef]
- Tangsrirat, W.; Channumsin, O.; Pimpol, J. Electronically adjustable capacitance multiplier circuit with a single voltage differencing gain amplifier (VDGA). Inf. MIDEM 2019, 49, 211–217. [Google Scholar]
- Roongmuanpha, N.; Tangsrirat, W.; Pukkalanun, T. Single VDGA-based mixed-bode universal filter and dual-mode quadrature oscillator. Sensors 2022, 22, 5303. [Google Scholar] [CrossRef] [PubMed]
- National Semiconductor. LM13600: Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers. Available online: https://pdf1.alldatasheet.com/datasheet-pdf/view/8640/NSC/LM13600N.html (accessed on 28 December 2022).
Ref. | Number of Active Element | Number of Passive Element | Available in Four Posible Modes | Filter Function Realized | Electronics Tunable | Passband Gain Tunable | fp (Hz) | Technology | Supply Voltages (V) | Power Consumption (W) | Technology | Supply Voltages (V) | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VM | CM | TAM | TIM | ||||||||||||
[1] | CCII+ = 1, CCII− = 1 | R = 4, C = 1 | no | all three | -- | -- | -- | no | VM: LP | 200 k | AD844 | N/A | N/A | -- | -- |
[2] | FDCCII = 1 | R = 3, C = 1 | no | all three | -- | Figure 3 and Figure 5: HP Figure 4: AP | -- | no | TAM: HP, AP | 79.6 k | -- | -- | -- | -- | -- |
[3] | MO-CCII = 2 | R = 1, C = 1 | no | -- | all three | -- | -- | no | no | 358 k | MIETEC 0.5 μm | ±2.5, −1.79 | N/A | -- | -- |
[4] | DVCC = 1 | R = 2, C = 1 | no | all three | -- | -- | -- | no | no | 1.59 M | TSMC 0.35 μm | ±1.65, −0.25, +0.5 | N/A | -- | -- |
[5] | DVCC = 2 | R = 1, C = 1 | no | all three | -- | -- | -- | no | no | 397 k | TSMC 0.18 μm | ±1.25, ±0.53 | N/A | -- | -- |
[6] | OTA = 1, MO-OTA = 1 | C = 1 | no | -- | AP | -- | -- | yes | no | 1 M | MOSIS 0.5 μm | ±2 | N/A | -- | -- |
[7] | DX-MOCCII = 1 | R = 2, C = 2 | no | -- | all three | -- | -- | no | CM: LP, HP | 1.59 M | TSMC 0.25 μm | ±1.25 | N/A | AD844 | ±10 |
[8] | CCII = 2 | R = 2, C = 1 | no | -- | all three | -- | -- | no | no | 1.32 M | TSMC 0.18 μm | ±1.25, −0.6 | N/A | -- | -- |
[9] | DVCC = 1 | R = 1, C = 1 | no | all three | -- | -- | -- | no | no | 1.59 M | TSMC 0.18 μm | ±0.9, −0.1, −0.36 | N/A | -- | -- |
[10] | DPCCII = 1 | R = 3, C = 1 | no | all three | -- | -- | -- | no | no | 7.96 k | TSMC 0.25 μm | ±0.75 | N/A | -- | -- |
[11] | CDBA = 1 | R = 2, C = 1 | no | -- | all three | -- | -- | no | CM: LP | 159 k | AD844 | ±5 | N/A | -- | -- |
[12] | DO-CCII = 2 | R = 1, C = 1 | no | -- | all three | -- | -- | no | no | 6.37 M | IBM 0.13 μm | ±0.75 | 4.8 m | -- | -- |
[13] | ICCII = 2 | RMOS = 1, C = 1 | no | -- | all three | -- | -- | yes | no | 2.6 M | IBM 0.13 μm | ±0.75, +0.37 | 2.75 m | -- | -- |
[14] | DX-MOCCII = 1 | R = 1, C = 1 | no | -- | all three | -- | -- | no | no | 7.96 M | TSMC 0.25 μm | ±1.25, −0.3 | N/A | -- | -- |
[15] | FTFN = 2 | R = 2, C = 2, switch = 1 | no | all three | -- | -- | -- | no | no | 1 M | AMS 0.35 μm | ±1.65 | 18.2m | AD844 | N/A |
[16] | Subtractor = 2 | R = 1, C = 1 | no | all three | -- | -- | -- | no | no | 6.37 M | IBM 0.13 μm | ±0.75, +0.24 | 1.77 m | AD844 | ±6 |
[17] | EX-CCCII = 1 | C = 1 | no | -- | all three | -- | -- | yes | no | 3.93 M | TSMC 0.25 μm | ±1.25 | 4.24 m | -- | -- |
[18] | OTA = 2 | R = 1, C = 1 | no | all three | -- | -- | -- | yes | VM: HP | 8.05 k | TSMC 0.18 μm | ±0.4 | 47.2 μ | LM13700 | ±5 |
[19] | MO-DXCCTA = 1 | Figure 1: C = 1, Figure 2: RMOS = 1, C = 1 | no | -- | Figure 1: all three | Figure 2: all three | -- | yes | TAM: LP, HP, AP | 11.7 M | TSMC 0.18 μm | ±1.25, +0.42 | 1.47 m | AD844, LM13700 | ±10 |
[20] | DXCCTA = 1 | C = 2 | no | -- | all three | -- | -- | yes | no | 10 M | TSMC 0.18 μm | ±1.25, +0.42 | 1.75 m | AD844, LM13700 | ±5 |
[21] | DD-DXCCII = 1 | RMOS = 3, C = 1 | no | -- | all three | -- | -- | yes | CM: LP, HP | 3 M | TSMC 0.18 μm | ±1.25, −0.6 | 2 m | -- | -- |
[22] | Figure 2: MO-CCII = 2 | R = 1, C = 1 | no | -- | all three | -- | -- | no | no | 15.55 M | TSMC 0.18 μm | ±1.25, +0.6 | 3.71 m | -- | -- |
Figure 9: DDCC = 2 | R = 1, C = 1 | no | all three | -- | -- | -- | no | no | 15.8 M | 3.71 m | -- | -- | |||
[23] | Figure 2: ICCII+ = 2 | R = 1, C = 1 | no | -- | all three | -- | -- | no | no | 7.96 M | IBM 0.13 μm | ±0.75, +0.23 | 3.29 m | AD844 | ±9 |
[24] | LT1228 = 1 | R = 2, C = 1 | no | all three | -- | -- | -- | yes | VM: LP, HP | 90 k | LT1228 | ±5 | 5.76 m | LT1228 | ±5 |
[25] | CFOA = 2 | R = 3–4, C = 1 | no | all three | -- | -- | -- | no | VM: LP, HP, AP | 159 k | -- | -- | -- | AD844 | ±12 |
[26] | MO-CDTA = 1 | C = 1 | no | -- | all three | -- | -- | yes | no | 1.59 M | TSMC 0.13 μm | ±1, −0.56 | 2.5 m | AD844, LM13700 | ±10 |
[27] | OTA = 3 | C = 1 | yes | all three | all three | all three | all three | yes | VM: HP, CM: LP, TAM: LP, HP, AP, TIM: LP, HP, AP | 159 k | TSMC 0.18 μm | ±0.9, −0.785 | N/A | LM13700 | ±15 |
Proposed circuit | VDGA = 1 | R = 1, C = 1 | yes | all three | all three | all three | all three | yes | VM: LP, HP, AP, CM: HP, AP, TAM: LP, HP, AP, TIM: LP, HP, AP | 1.59 M | TSMC 0.18 μm | ±0.9 | 1.31 m | LM13600 | ±5 |
Mode of Operation | LP | HP | AP |
---|---|---|---|
VM | (−1/gmCR) | β | β |
TAM | (−1/R) | gmB | gmB |
CM | −1 | gmAR | gmAR |
TIM | (−1/gmA) | R | R |
Transistors | W (μm) | L (μm) |
---|---|---|
M1k–M2k | 23.5 | 0.18 |
M3k–M4k | 30 | 0.18 |
M5k–M7k | 5 | 0.18 |
M8k–M9k | 5.5 | 0.18 |
VM | TAM | CM | TIM | |||||
---|---|---|---|---|---|---|---|---|
fp (MHz) | Error (%) | fp (MHz) | Error (%) | fp (MHz) | Error (%) | fp (MHz) | Error (%) | |
LP | 1.51 | 5.03 | 1.49 | 6.29 | 1.49 | 6.29 | 1.49 | 6.29 |
HP | 1.50 | 5.66 | 1.49 | 6.29 | 1.50 | 5.66 | 1.45 | 8.81 |
AP | 1.52 | 4.40 | 1.52 | 4.4 | 1.52 | 4.40 | 1.49 | 6.29 |
Temperature | |||||
---|---|---|---|---|---|
0 °C | 25 °C | 50 °C | 75 °C | 100 °C | |
Gain (dBV) | −0.06 | −0.14 | −0.22 | −0.32 | −0.42 |
Phase (degree) | 92.34 | 87.94 | 83.83 | 80.04 | 76.57 |
VM | TAM | CM | TIM | |||||
---|---|---|---|---|---|---|---|---|
fp (kHz) | Error (%) | fp (kHz) | Error (%) | fp (kHz) | Error (%) | fp (kHz) | Error (%) | |
LP | 228.04 | 2.54 | 231.31 | 1.14 | 240.59 | 2.81 | 231.12 | 1.23 |
HP | 251.18 | 7.34 | 237.98 | 1.70 | 241.54 | 3.22 | 228.04 | 2.54 |
AP | 231.31 | 1.14 | 230.74 | 1.33 | 237.72 | 1.58 | 237.31 | 1.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roongmuanpha, N.; Likhitkitwoerakul, N.; Fukuhara, M.; Tangsrirat, W. Single VDGA-Based Mixed-Mode Electronically Tunable First-Order Universal Filter. Sensors 2023, 23, 2759. https://doi.org/10.3390/s23052759
Roongmuanpha N, Likhitkitwoerakul N, Fukuhara M, Tangsrirat W. Single VDGA-Based Mixed-Mode Electronically Tunable First-Order Universal Filter. Sensors. 2023; 23(5):2759. https://doi.org/10.3390/s23052759
Chicago/Turabian StyleRoongmuanpha, Natchanai, Nutcha Likhitkitwoerakul, Masaaki Fukuhara, and Worapong Tangsrirat. 2023. "Single VDGA-Based Mixed-Mode Electronically Tunable First-Order Universal Filter" Sensors 23, no. 5: 2759. https://doi.org/10.3390/s23052759
APA StyleRoongmuanpha, N., Likhitkitwoerakul, N., Fukuhara, M., & Tangsrirat, W. (2023). Single VDGA-Based Mixed-Mode Electronically Tunable First-Order Universal Filter. Sensors, 23(5), 2759. https://doi.org/10.3390/s23052759