A Simple Approach to Connecting Pt100 by Utilizing an Electroacoustic Resonance Tube
Abstract
:1. Introduction
- -
- its sensitivity in the no-load and internal resistance Zin modes;
- -
- its frequency dependence types (wideband and resonant receivers).
- -
- the distance between the transmitter and the receiver;
- -
- the current and voltage applied to the speaker coil;
- -
- an electric energy source’s load, represented by internal resistance;
- -
- the acoustic load resistance ZL, which is equal to the radiation resistance Zr when an electric field meets a continuous medium.
2. Materials and Methods
2.1. Theoretical Background
2.2. Transducer Design
- (1)
- Standing wave frequency;
- (2)
- Standing wave amplitude;
- (3)
- Standing wave phase;
- (4)
- Voltage applied to the microphone or speaker;
- (5)
- Current sent through the speaker or microphone.
2.3. Software Design
3. Experimental Setup
4. Experimental Results and Data Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sakamoto, T.; Kimura, S. Plant Temperature Sensors. Sensors 2018, 18, 4365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhutti, A.; Tumin, S.A.; Balachandran, W.; Kanfoud, J.; Gan, T.-H. Development of Ultrasonic Guided Wave Transducer for Monitoring of High Temperature Pipelines. Sensors 2019, 19, 5443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leonidas, E.; Ayvar-Soberanis, S.; Laalej, H.; Fitzpatrick, S.; Willmott, J.R. A Comparative Review of Thermocouple and Infrared Radiation Temperature Measurement Methods during the Machining of Metals. Sensors 2022, 22, 4693. [Google Scholar] [CrossRef] [PubMed]
- Watschke, H.; Goutier, M.; Heubach, J.; Vietor, T.; Leichsenring, K.; Böl, M. Novel Resistive Sensor Design Utilizing the Geometric Freedom of Additive Manufacturing. Appl. Sci. 2020, 11, 113. [Google Scholar] [CrossRef]
- Lakshminarayana, S.; Park, Y.; Park, H.; Jung, S. High Density Resistive Array Readout System for Wearable Electronics. Sensors 2022, 22, 1878. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.-H.; Kim, H.-N.; Cho, J.Y.; Kim, J.H.; Lee, C.-Y. Evaluation of Temperature Sensors for Detection of Heat Sources Using Additive Printing Method. Sensors 2022, 22, 8308. [Google Scholar] [CrossRef]
- Balakrishnan, V.; Phan, H.-P.; Dinh, T.; Dao, D.V.; Nguyen, N.-T. Thermal Flow Sensors for Harsh Environments. Sensors 2017, 17, 2061. [Google Scholar] [CrossRef] [Green Version]
- Shankhour, I.; Mohdad, J.; Mailly, F.; Nouet, P. Fully Electrical Post-Fabrication Trimming of Resistive Sensors. Sensors 2022, 22, 767. [Google Scholar] [CrossRef]
- Hidalgo-López, J.A.; Botín-Córdoba, J.A.; Sánchez-Durán, J.A.; Oballe-Peinado, Ó. Fast Calibration Methods for Resistive Sensor Readout Based on Direct Interface Circuits. Sensors 2019, 19, 3871. [Google Scholar] [CrossRef] [Green Version]
- Shevelko, M.; Lutovinov, A.; Peregudov, A.; Popkova, E.; Durukan, Y.; Shevchenko, S. The Sensitive Element of Acoustic Sensor on Circular Polarized Waves: From Theoretical Considerations towards Perspective Rotation Rate Sensors Design. Sensors 2020, 21, 32. [Google Scholar] [CrossRef]
- Dogra, S.; Gupta, A. Design, Manufacturing, and Acoustical Analysis of a Helmholtz Resonator-Based Metamaterial Plate. Acoustics 2021, 3, 630–641. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, X.; Ji, Y.; Wang, X. Acoustic Wave Propagation in a Borehole with a Gas Hydrate-Bearing Sediment. J. Mar. Sci. Eng. 2022, 10, 235. [Google Scholar] [CrossRef]
- Lin, B.-R.; Goh, A.; Wang, K.-W. Analysis of a Resonant Converter with Wide Input Voltage. Electronics 2021, 10, 1110. [Google Scholar] [CrossRef]
- Bschorr, O.; Raida, H.-J. One-Way Wave Equation Derived from Impedance Theorem. Acoustics 2020, 2, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Alzaleq, L.; Manoranjan, V.; Alzalg, B. Exact Traveling Waves of a Generalized Scale-Invariant Analogue of the Korteweg–de Vries Equation. Mathematics 2022, 10, 414. [Google Scholar] [CrossRef]
- Rufer, L. CMOS-MEMS Electroacoustic Micro-Transducers. J. Innov. Electron. Commun. (JIECE) 2016, 6, 1–6. Available online: https://www.researchgate.net/publication/317298870_Electroacoustic_Micro-Transducers (accessed on 26 February 2023).
- Lin, S.; Zhang, F. Measurement of ultrasonic power and electro-acoustic efficiency of high power transducers. Ultrasonics 2000, 37, 549–554. [Google Scholar] [CrossRef]
- Lu, B.Y. Unidirectional Microphone based Wireless Recorder for the Respiration Sound. J. Bioeng. Biomed. Sci. 2016, 6, 195. [Google Scholar] [CrossRef] [Green Version]
- Kurz, N.; Ding, A.; Urban, D.F.; Lu, Y.; Kirste, L.; Feil, N.M.; Žukauskaitė, A.; Ambacher, O. Experimental determination of the electro-acoustic properties of thin film AlScN using surface acoustic wave resonators. J. Appl. Phys. 2019, 126, 075106. [Google Scholar] [CrossRef]
- Yang, Y.; Wei, X.; Zhang, L.; Yao, W. The Effect of Electrical Impedance Matching on the Electromechanical Characteristics of Sandwiched Piezoelectric Ultrasonic Transducers. Sensors 2017, 17, 2832. [Google Scholar] [CrossRef] [Green Version]
- Iegorov, O.; Iegorova, O.; Miroshnyk, O.; Savchenko, O. Improving the accuracy of determining the parameters of induction motors in transient starting modes. Energetika 2020, 66, 15–23. [Google Scholar] [CrossRef]
- Nedev, S. Speed of sound in a closed pipe using a sound card. Phys. Educ. 2002, 37, 527. [Google Scholar] [CrossRef]
- Alsabbah, S.; Mughrabi, T. Neural network-based waveguide acoustic gas detector. In Proceedings of the 5th International Symposium on Mechatronics and Its Applications (ISM 2008), Amman, Jordan, 27–29 May 2008. [Google Scholar] [CrossRef]
- Younes, T.M.; Alia, M.A.; Al-Sabbah, S. Acoustic Temperature Transducer. Sens. Transducers 2010, 119, 46–57. Available online: https://www.researchgate.net/publication/317539743_Acoustic_Temperature_Transducer (accessed on 31 August 2010).
- Pazyi, V.; Miroshnyk, O.; Moroz, O.; Trunova, I.; Savchenko, O.; Halko, S. Analysis of technical condition diagnostics problems and monitoring of distribution electrical network modes from smart grid platform position. In Proceedings of the 2020 IEEE KhPI Week on Advanced Technology (KhPIWeek), Kharkiv, Ukraine, 5–10 October 2020; pp. 57–60. [Google Scholar] [CrossRef]
- Younes, T.; Al Khawaldah, M.; Al-Adwan, I. Resonance Mode Acoustic Displacement, Transducer. Sens. Transducers 2014, 172, 34–38. Available online: https://www.researchgate.net/publication/288119275_Resonance_Mode_Acoustic_Displacement_Transducer (accessed on 6 June 2014).
- Tariq, M.Y.; Ilyasov, L.V. Acoustic Detector of Gases and Vapors. Patent No. 33822, 23 December 2003. [Google Scholar]
- Oskui, S.M.; Bhakta, H.C.; Diamante, G.; Liu, H.; Schlenk, D.; Grover, W.H. Measuring the mass, volume, and density of microgram-sized objects in fluid. PLoS ONE 2017, 12, e0174068. [Google Scholar] [CrossRef] [Green Version]
- Petchmaneelumka, W.; Songsuwankit, K.; Rerkratn, A.; Riewruja, V. Simple LVDT signal conditioner. In Proceedings of the 3rd International Conference on Control, Automation and Robotics (ICCAR), Nagoya, Japan, 24–26 April 2017; pp. 758–761. [Google Scholar] [CrossRef]
- Tariq, M.Y. Waveguide Acoustic Detectors of Gases and Vapors. Ph.D. Thesis, Moscow State University of Environmental Engineering, Moscow, Russia, 2003. [Google Scholar]
- Al-Rawashdeh, A.Y.; Younes, T.M.; Dalabeeh, A.; Al_Issa, H.; Qawaqzeh, M.; Miroshnyk, O.; Kondratiev, A.; Kučera, P.; Píštěk, V.; Stepenko, S. Experimental Investigation of Microcontroller-Based Acoustic Temperature Transducer Systems. Sensors 2023, 23, 884. [Google Scholar] [CrossRef] [PubMed]
- Siczek, R.; Skorupka, D. Mathematic models of a loudspeakers using in building alarm systems—Simulation process. AIP Conf. Proc. 2017, 1863, 230012. [Google Scholar] [CrossRef]
- Khasawneh, A.; Qawaqzeh, M.; Miroshnyk, O.; Danylchenko, D.; Minakova, K.; Potryvai, A. Methodology for Accounting for the Influence of Dust Cover on the Performance of a Photovoltaic System for Matlab Simulink. In Proceedings of the 2021 IEEE International Conference on Modern Electrical and Energy Systems (MEES), Kremenchuk, Ukraine, 21–24 September 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Pelletier, M.G.; Holt, G.A.; Wanjura, J.D. Simplified Three-Microphone Acoustic Test Method. Instruments 2017, 1, 4. [Google Scholar] [CrossRef] [Green Version]
- Piechowski, L.; Muc, A.; Iwaszkiewicz, J. The Precise Temperature Measurement System with Compensation of Measuring Cable Influence. Energies 2021, 14, 8214. [Google Scholar] [CrossRef]
- Qawaqzeh, M.; Miroshnyk, O.; Shchur, T.; Kasner, R.; Idzikowski, A.; Kruszelnicka, W.; Tomporowski, A.; Bałdowska-Witos, P.; Flizikowski, J.; Zawada, M.; et al. Research of Emergency Modes of Wind Power Plants Using Computer Simulation. Energies 2021, 14, 4780. [Google Scholar] [CrossRef]
Surrounding Temperature, °C | Experimental Results | ||
---|---|---|---|
Rt, Ohm | Vdivider, V | Vsp, mV | |
20 | 109.8 | 2.59 | 348.9 |
25 | 110.6 | 2.72 | 336.7 |
30 | 113.7 | 2.64 | 331.4 |
35 | 115.7 | 2.76 | 326.7 |
40 | 116.6 | 2.68 | 322.0 |
45 | 119.6 | 2.80 | 318.3 |
50 | 121.6 | 2.72 | 314.0 |
55 | 123.5 | 2.84 | 310.6 |
60 | 125.5 | 2.76 | 307.2 |
65 | 127.4 | 2.88 | 300.0 |
70 | 129.4 | 2.80 | 296.9 |
75 | 130.3 | 2.92 | 293.1 |
80 | 133.3 | 2.84 | 290.1 |
85 | 134.2 | 2.86 | 285.3 |
90 | 136.2 | 2.87 | 280.4 |
95 | 138.1 | 2.99 | 277.9 |
100 | 141.1 | 3.01 | 273.0 |
105 | 143.1 | 3.03 | 269.6 |
110 | 144.0 | 3.04 | 265.4 |
115 | 147.0 | 3.06 | 260.1 |
120 | 148.9 | 3.08 | 255.6 |
125 | 149.9 | 2.99 | 250.3 |
130 | 152.8 | 3.11 | 246.2 |
135 | 154.8 | 3.12 | 241.2 |
140 | 155.7 | 3.14 | 237.0 |
145 | 158.7 | 3.05 | 232.1 |
150 | 159.7 | 3.17 | 226.3 |
155 | 162.6 | 3.08 | 221.1 |
160 | 164.6 | 3.20 | 215.1 |
165 | 166.5 | 3.21 | 210.6 |
170 | 167.5 | 3.12 | 205.4 |
175 | 170.4 | 3.14 | 201.7 |
180 | 172.4 | 3.15 | 196.1 |
185 | 174.3 | 3.26 | 191.6 |
190 | 176.3 | 3.18 | 185.7 |
195 | 178.2 | 3.29 | 181.8 |
200 | 180.2 | 3.30 | 175.5 |
Comparison Parameter | Electroacoustic Signal Conditioner | Traditional Approach |
---|---|---|
Output signal | Volts | Volts |
Need for reference resistor(s) | No need | 1 resistor for voltage divider circuit. 3 resistors for whetstone bridge circuit |
V | 2 V | 5 V |
Need for special computer interfacing block | Does not need additional blocks Standard PC sound card can be implemented | Needs interfacing units to complete connection with PC |
Range of measured temperature | 20–100 °C | 0–850 °C |
Sensitivity | −7.44 mV/°C | 5.88 mV/°C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qawaqzeh, M.; Al-Taweel, F.M.; Stecuła, K.; Markowska, K.; Khawaldah, M.A.; Younes, T.M.; Alrifai, B.; Miroshnyk, O.; Shchur, T. A Simple Approach to Connecting Pt100 by Utilizing an Electroacoustic Resonance Tube. Sensors 2023, 23, 2775. https://doi.org/10.3390/s23052775
Qawaqzeh M, Al-Taweel FM, Stecuła K, Markowska K, Khawaldah MA, Younes TM, Alrifai B, Miroshnyk O, Shchur T. A Simple Approach to Connecting Pt100 by Utilizing an Electroacoustic Resonance Tube. Sensors. 2023; 23(5):2775. https://doi.org/10.3390/s23052775
Chicago/Turabian StyleQawaqzeh, Mohamed, Farouq M. Al-Taweel, Kinga Stecuła, Katarzyna Markowska, Mohammad Al Khawaldah, Tariq M. Younes, Basem Alrifai, Oleksandr Miroshnyk, and Taras Shchur. 2023. "A Simple Approach to Connecting Pt100 by Utilizing an Electroacoustic Resonance Tube" Sensors 23, no. 5: 2775. https://doi.org/10.3390/s23052775