Calibration Methods for Time-to-Digital Converters †
Abstract
:1. Introduction
2. Synchronous TDCs Calibration
2.1. Operating Principle of Synchronous TDCs
2.2. Calibration Methods for Synchronous TDCs
2.2.1. Bin-by-Bin Calibration
2.2.2. Average-Bin-Width Calibration Method
3. Asynchronous TDCs Calibration
3.1. Operating Principle of Asynchronous TDCs
3.2. Calibration Methods for Asynchronous TDCs
3.2.1. Bin-by-Bin Method
3.2.2. Matrix Calibration
- 1.
- Step 1: Individual calibration of the Start and Stop fine.
- 2.
- Step 2: Column calibration.
- 3.
- Step 3: Row calibration.
- 4.
- Step 4: Building 1-D calibrated histogram.
4. Simulation Results
4.1. Synchronous TDCs
4.2. Asynchronous TDCs
5. Experimental Results
5.1. Synchronous TDCs
5.2. Asynchronous TDCs
5.3. Processing Speed Comparison
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choi, K.-J.; Jee, D.-W. Design and Calibration Techniques for a Multichannel FPGA-Based Time-to-Digital Converter in an Object Positioning System. IEEE Trans. Instrum. Meas. 2021, 70, 1–9. [Google Scholar] [CrossRef]
- Qin, X.; Zhu, M.; Zhang, W.; Lin, Y.; Rui, Y.; Rong, X.; Du, J. A high resolution time-to-digital-convertor based on a carry-chain and DSP48E1 adders in a 28-nm field-programmable-gate-array. Rev. Sci. Instrum. 2020, 91, 024708. [Google Scholar] [CrossRef] [Green Version]
- Won, J.Y.; Kwon, S.I.; Yoon, H.S.; Ko, G.B.; Son, J.-W.; Lee, J.S. Dual-Phase Tapped-Delay-Line Time-to-Digital Converter with On-the-Fly Calibration Implemented in 40 nm FPGA. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 231–242. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Y.; Li, D.D.-U. A Low Nonlinearity, Missing-Code Free Time-to-Digital Converter Based on 28-nm FPGAs with Embedded Bin-Width Calibrations. IEEE Trans. Instrum. Meas. 2017, 66, 1912–1921. [Google Scholar] [CrossRef] [Green Version]
- Incoronato, A.; Locatelli, M.; Zappa, F. Statistical Modelling of SPADs for Time-of-Flight LiDAR. Sensors 2021, 21, 4481. [Google Scholar] [CrossRef] [PubMed]
- Dieguez, A.; Canals, J.; Franch, N.; Dieguez, J.; Alonso, O.; Vila, A. A Compact Analog Histogramming SPAD-Based CMOS Chip for Time-Resolved Fluorescence. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 343–351. [Google Scholar] [CrossRef]
- Nie, K.; Wang, X.; Qiao, J.; Xu, J. A Full Parallel Event Driven Readout Technique for Area Array SPAD FLIM Image Sensors. Sensors 2016, 16, 160. [Google Scholar] [CrossRef] [Green Version]
- Villa, F.; Markovic, B.; Bellisai, S.; Bronzi, D.; Tosi, A.; Zappa, F.; Tisa, S.; Durini, D.; Weyers, S.; Paschen, U.; et al. SPAD Smart Pixel for Time-of-Flight and Time-Correlated Single-Photon Counting Measurements. IEEE Photonics J. 2012, 4, 795–804. [Google Scholar] [CrossRef]
- Huang, Z.; Huang, J.; Tian, L.; Wang, N.; Zhu, Y.; Wang, H.; Feng, S. A 13-Bit, 12-ps Resolution Vernier Time-to-Digital Converter Based on Dual Delay-Rings for SPAD Image Sensor. Sensors 2021, 21, 743. [Google Scholar] [CrossRef]
- Wang, J.; Liu, S.; Shen, Q.; Li, H.; An, Q. A Fully Fledged TDC Implemented in Field-Programmable Gate Arrays. IEEE Trans. Nucl. Sci. 2010, 57, 446–450. [Google Scholar] [CrossRef]
- Khaddour, W.; Dadouche, F.; Uhring, W.; Frick, V.; Madec, M. Design Methodology and Timing Considerations for implementing a TDC on a Cyclone V FPGA Target. In Proceedings of the 2020 18th IEEE International New Circuits and Systems Conference (NEWCAS), Montreal, QC, Canada, 16–19 June 2020; pp. 126–129. [Google Scholar]
- Dadouche, F.; Turko, T.; Malass, I.; Skilitsi, A.; Léonard, J.; Uhring, W. Design, Implementation and Characterization of Time-to-Digital Converter on Low-Cost FPGA. In Sensors and Applications in Measuring and Automation Control Systems; Sergey, Y., Yurish, Eds.; Book Series: Advances in Sensors: Reviews; Sensors and Applications in Measuring and Automation Control Systems; International Frequency Sensor Association (IFSA): Barcelona, Spain, 2016; Volume 4, pp. 205–229. [Google Scholar]
- Garzetti, F.; Corna, N.; Lusardi, N.; Geraci, A. Time-to-digital converter IP-core for FPGA at state of the art. IEEE Access 2021, 9, 85515–85528. [Google Scholar] [CrossRef]
- Parsakordasiabi, M.; Vornicu, I.; Rodríguez-Vázquez, Á.; Carmona-Galán, R. A Low-Resources TDC for Multi-Channel Direct ToF Readout Based on a 28-nm FPGA. Sensors 2021, 21, 308. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Ma, R.; Wang, X.; Hu, J.; Liu, M.; Zhu, Z. DTOF Image LiDAR with Stray Light Suppression and Equivalent Sampling Technology. IEEE Sens. J. 2022, 22, 2358–2369. [Google Scholar] [CrossRef]
- Bayer, E.; Traxler, M. A High-Resolution (<10 ps RMS) 48-Channel Time-to-Digital Converter (TDC) Implemented in a Field Programmable Gate Array (FPGA). IEEE Trans. Nucl. Sci. 2010, 58, 1547–1552. [Google Scholar]
- Zhang, M.; Zhao, Y.; Han, Z.; Zhao, F. A 19 ps Precision and 170 M Samples/s Time-to-Digital Converter Implemented in FPGA with Online Calibration. Appl. Sci. 2022, 12, 3649. [Google Scholar] [CrossRef]
- Chen, Y. Run-time calibration scheme for the implementation of a robust field-programmable gate array-based time-to-digital converter. Int. J. Circuit Theory Appl. 2018, 47, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Xie, J.; Xing, Z.; Yuan, W.; Yu, G.; Zeng, Z.; Zhang, B.; Wu, D. A Bin-by-Bin Calibration with Neural Network for FPGA-Based Tapped-Delay-Line Time-to-Digital Converter. In Proceedings of the 2022 IEEE International Conference on Real-Time Computing and Robotics (RCAR), Guiyang, China, 17–22 July 2022; pp. 681–686. [Google Scholar]
- Song, Z.; Zhao, Z.; Yu, H.; Yang, J.; Zhang, X.; Sui, T.; Xu, J.; Xie, S.; Huang, Q.; Peng, Q. An 8.8 ps RMS Resolution Time-To-Digital Converter Implemented in a 60 nm FPGA with Real-Time Temperature Correction. Sensors 2020, 20, 2172. [Google Scholar] [CrossRef] [Green Version]
- Cao, G.; Xia, H.; Dong, N. An 18-ps TDC using timing adjustment and bin realignment methods in a Cyclone-IV FPGA. Rev. Sci. Instrum. 2018, 89, 054707. [Google Scholar] [CrossRef]
- Mao, X.; Yang, F.; Wei, F.; Shi, J.; Cai, J.; Cai, H. A Low Temperature Coefficient Time-to-Digital Converter with 1.3 ps Resolution Implemented in a 28 nm FPGA. Sensors 2022, 22, 2306. [Google Scholar] [CrossRef]
- Zhang, W.; Edwards, C.; Gong, D.; Huang, X.; Liu, C.; Liu, T.; Liu, T.; Olsen, J.; Sun, H.; Sun, Q.; et al. TDC with uncontrolled delay lines: Calibration approaches and Precision Improvement Methods. J. Instrum. 2023, 18, C01011. [Google Scholar] [CrossRef]
- Ito, S.; Nishimura, S.; Kobayashi, H.; Uemori, S.; Tan, Y.; Takai, N.; Yamaguchi, T.J.; Niitsu, K. Stochastic TDC architecture with self-calibration. In Proceedings of the 2010 IEEE Asia Pacific Conference on Circuits and Systems, Kuala Lumpur, Malaysia, 6–9 December 2010; pp. 1027–1030. [Google Scholar]
- Yao, C.-W.; Ni, R.; Lau, C.; Wu, W.; Godbole, K.; Zuo, Y.; Ko, S.; Kim, N.-S.; Han, S.; Jo, I.; et al. A 14-nm 0.14-ps rms Fractional-N Digital PLL with a 0.2-ps Resolution ADC-Assisted Coarse/Fine-Conversion Chopping TDC and TDC Nonlinearity Calibration. IEEE J. Solid-State Circuits 2017, 52, 3446–3457. [Google Scholar] [CrossRef]
- Khaddour, W.; Uhring, W.; Dadouche, F.; Dumas, N.; Madec, M. High precision calibration method for asynchronous time-to-digital converters. In Proceedings of the 2022 20th IEEE Interregional NEWCAS Conference (NEWCAS), Québec City, QC, Canada, 19–22 June 2022; pp. 421–425. [Google Scholar]
- Pan, W.; Gong, G.; Li, J. A 20-ps Time-to-Digital Converter (TDC) Implemented in Field-Programmable Gate Array (FPGA) with Automatic Temperature Correction. IEEE Trans. Nucl. Sci. 2014, 61, 1468–1473. [Google Scholar] [CrossRef]
- Wu, J. Several key issues on implementing delay line based TDCs using FPGAs. IEEE Trans. Nucl. Sci. 2010, 57, 1543–1548. [Google Scholar] [CrossRef]
- Wu, J. Uneven bin width digitization and a timing calibration method using cascaded PLL. In Proceedings of the 19th IEEE-NPSS Real Time Conference, Nara, Japan, 26–30 May 2014. [Google Scholar]
- Uhring, W.; Zint, C.-V.; Bartringer, J. A low-cost high-repetition-rate picosecond laser diode pulse generator. In Proceedings of the Semiconductor Lasers and Laser Dynamics, Strasbourg, France, 26–30 April 2004; Volume 5452, pp. 583–590. [Google Scholar]
Mean | Median | STD | ||
---|---|---|---|---|
DNL data statistics | Raw TDC | 0 | −0.1054 | 0.7362 |
Bin-by-bin | 0 | −0.07453 | 0.7798 | |
Average-bin-width | 0 | −0.0003624 | 0.009665 | |
INL data statistics | Raw TDC | 0.2614 | 0.2038 | 1.676 |
Bin-by-bin | 0.003083 | 0.007194 | 0.4816 | |
Average-bin-width | 0.0026 | 0.006688 | 0.03167 |
Mean | Median | STD | ||
---|---|---|---|---|
DNL data statistics | Non-calibrated histogram | ~0 | −0.0049 | 0.056 |
Bin-by-bin calibration | ~0 | −0.0036 | 0.058 | |
Matrix calibration | ~0 | 0.00033 | 0.0035 | |
INL data statistics | Non-calibrated histogram | −0.034 | −0.008 | 0.14 |
Bin-by-bin calibration | −0.0064 | −0.004 | 0.045 | |
Matrix calibration | 0.0036 | 0.0048 | 0.023 |
Total Number of Bins in Calibrated Histogram | Number of Calibrated Bins in Clock Period | Maximum Value of COARSE | Calibration Process Speed (CPU Tick) | Ratio (Matrix/Bin-by-Bin) | |
---|---|---|---|---|---|
Bin-by-Bin Calibration | Matrix Calibration | ||||
4609 | 256 | 19 | 543,2528 | 42,229,555 | 7.77 |
1537 | 256 | 7 | 220,7046 | 18,058,416 | 8.18 |
513 | 256 | 3 | 1,197,789 | 9,453,249 | 7.89 |
385 | 256 | 2 | 952,921 | 7,493,491 | 7.86 |
301 | 200 | 2 | 959,247 | 5,279,525 | 5.5 |
226 | 150 | 2 | 936,000 | 3,681,132 | 3.93 |
151 | 100 | 2 | 938,161 | 2,501,956 | 2.67 |
76 | 50 | 2 | 930,375 | 1,467,180 | 1.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khaddour, W.; Uhring, W.; Dadouche, F.; Dumas, N.; Madec, M. Calibration Methods for Time-to-Digital Converters. Sensors 2023, 23, 2791. https://doi.org/10.3390/s23052791
Khaddour W, Uhring W, Dadouche F, Dumas N, Madec M. Calibration Methods for Time-to-Digital Converters. Sensors. 2023; 23(5):2791. https://doi.org/10.3390/s23052791
Chicago/Turabian StyleKhaddour, Wassim, Wilfried Uhring, Foudil Dadouche, Norbert Dumas, and Morgan Madec. 2023. "Calibration Methods for Time-to-Digital Converters" Sensors 23, no. 5: 2791. https://doi.org/10.3390/s23052791
APA StyleKhaddour, W., Uhring, W., Dadouche, F., Dumas, N., & Madec, M. (2023). Calibration Methods for Time-to-Digital Converters. Sensors, 23(5), 2791. https://doi.org/10.3390/s23052791