Spatially Offset Raman Spectroscopy Combined with Attention-Based LSTM for Freshness Evaluation of Shrimp
Abstract
:1. Introduction
- (1)
- Use a line-scan Raman hyperspectral imaging system to collect shrimp scattering images and perform pre-processing and spectral analysis;
- (2)
- Build the LSTM layer to extract the shrimp tissue scattering features and chemical composition spectral features, use the attention layer to weight the output of the LSTM module, and train the model;
- (3)
- Validate the advantages of the attention-based LSTM model in assessing the freshness of in-shell shrimp by comparing different structures of attention-based LSTM and machine learning models.
2. Materials and Methods
2.1. Sample Preparation
2.2. Instrument and Experiment
2.3. Scattering Image Preprocessing
2.4. Attention-Based LSTM Model
2.4.1. Model Structure
2.4.2. Parameter Setting and Running Environment
2.5. Model Comparison and Evaluation
3. Result and Discussion
3.1. Raman Spectra Analysis
3.2. Freshness Modeling Prediction Results
3.3. Validation of Model Structure Rationalization
3.4. Model Comparison Results
3.5. Analysis and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Okpala, C.O.R.; Bono, G.; Cannizzaro, L.; Jereb, P. Changes in lipid oxidation and related flesh qualities of white shrimp (Litopenaeus vannamei) during iced storage: Effects on the use of increasing ozone exposures. Eur. J. Lipid Sci. Technol. 2016, 118, 1942–1951. [Google Scholar] [CrossRef]
- Jia, R.N.; Tian, W.G.; Bai, H.T.; Zhang, J.M.; Wang, S.; Zhang, J. Amine-responsive cellulose-based ratiometric fluorescent materials for real-time and visual detection of shrimp and crab freshness. Nat. Commun. 2019, 10, 795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.H.; Dai, D.J.; Huang, J.C.; Zhou, J.; Gui, Q.F.; Dai, F. Influence of physical and biological variability and solution methods in fruit and vegetable quality nondestructive inspection by using imaging and near-infrared spectroscopy techniques: A review. Crit. Rev. Food Sci. 2018, 58, 2099–2118. [Google Scholar] [CrossRef]
- Sui, Y.; Zhang, L.; Lu, S.; Yang, D.; Zhu, C. Research on the Shrimp Quality of Different Storage Conditions Based on Raman Spectroscopy and Prediction Model. Spectrosc. Spectr. Anal. 2020, 40, 1607. [Google Scholar]
- Matousek, P.; Morris, M.D.; Everall, N.; Clark, I.P.; Towrie, M.; Draper, E.; Goodship, A.; Parker, A.W. Numerical simulations of subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy. Appl. Spectrosc. 2005, 59, 1485–1492. [Google Scholar] [CrossRef]
- Matousek, P.; Stone, N. Development of deep subsurface Raman spectroscopy for medical diagnosis and disease monitoring. Chem. Soc. Rev. 2016, 45, 1794–1802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, J.; Chao, K.; Kim, M.S. Nondestructive evaluation of internal maturity of tomatoes using spatially offset Raman spectroscopy. Postharvest Biol. Technol. 2012, 71, 21–31. [Google Scholar] [CrossRef]
- Qin, J.; Kim, M.S.; Schmidt, W.F.; Cho, B.-K.; Peng, Y.; Chao, K. A line-scan hyperspectral Raman system for spatially offset Raman spectroscopy. J. Raman Spectrosc. 2016, 47, 437–443. [Google Scholar] [CrossRef]
- Afseth, N.K.; Bloomfield, M.; Wold, J.P.; Matousek, P. A Novel Approach for Subsurface Through-Skin Analysis of Salmon Using Spatially Offset Raman Spectroscopy (SORS). Appl. Spectrosc. 2014, 68, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.F.; Huang, M.; Zhu, Q.B.; Qin, J.W.; Kim, M.S. Nondestructive freshness evaluation of intact prawns (Fenneropenaeus chinensis) using line-scan spatially offset Raman spectroscopy. Food Control 2021, 126, 108054. [Google Scholar] [CrossRef]
- Liu, Z.F.; Huang, M.; Zhu, Q.B.; Qin, J.W.; Kim, M.S. Packaged food detection method based on the generalized Gaussian model for line-scan Raman scattering images. J. Food Eng. 2019, 258, 9–17. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, M.; Zhu, Q.; Qin, J.; Kim, M.S. A packaged food internal Raman signal separation method based on spatially offset Raman spectroscopy combined with FastICA. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 275, 121154. [Google Scholar] [CrossRef]
- Zhou, H.; Huang, M.; Zhu, Q.; Zhang, M. Developing C-LSTM model for evaluating moisture content of carrot slices during drying. Dry. Technol. 2021, 40, 2964–2974. [Google Scholar] [CrossRef]
- Pelletier-Allard, N.; Pelletier, R. Stokes and anti-stokes line shifts. J. Lumin. 1986, 34, 323–326. [Google Scholar] [CrossRef]
- Zhong, N.; Li, Y.P.; Li, X.Z.; Guo, C.X.; Wu, T. Accurate prediction of salmon storage time using improved Raman spectroscopy. J. Food Eng. 2021, 293, 110378. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. arXiv 2014, arXiv:1409.0473. [Google Scholar]
- El-Abassy, R.M.; Donfack, P.; Materny, A. Visible Raman spectroscopy for the discrimination of olive oils from different vegetable oils and the detection of adulteration. J. Raman Spectrosc. 2009, 40, 1284–1289. [Google Scholar] [CrossRef]
- Noack, K.; Eskofier, B.; Kiefer, J.; Dilk, C.; Bilow, G.; Schirmer, M.; Buchholz, R.; Leipertz, A. Combined shifted-excitation Raman difference spectroscopy and support vector regression for monitoring the algal production of complex polysaccharides. Analyst 2013, 138, 5639–5646. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Park, D.; Lee, C. Feature Selection Algorithm for Intrusions Detection System using Sequential Forward Search and Random Forest Classifier. KSII Trans. Internet Inf. Syst. 2017, 11, 5112–5128. [Google Scholar]
- Shao, J.H.; Zou, Y.F.; Xu, X.L.; Wu, J.Q.; Zhou, G.H. Evaluation of structural changes in raw and heated meat batters prepared with different lipids using Raman spectroscopy. Food Res. Int. 2011, 44, 2955–2961. [Google Scholar] [CrossRef]
- Herrero, A.M. Raman spectroscopy a promising technique for quality assessment of meat and fish: A review. Food Chem. 2008, 107, 1642–1651. [Google Scholar] [CrossRef]
- Herrero, A.M. Raman spectroscopy for monitoring protein structure in muscle food systems. Crit. Rev. Food Sci. 2008, 48, 512–523. [Google Scholar] [CrossRef] [PubMed]
Layer | Input Shape | Units | Activation/Loss | Output Shape | Parameters |
---|---|---|---|---|---|
LSTM | 200 × 11 | 21 | tanh | 200 × 21 | 2772 |
Attention | 200 × 21 | 50 | tanh | 50 | 2541 |
FC | 50 | 10 | ReLU | 10 | 510 |
Output | 10 | - | MSE | 1 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Yang, Y.; Huang, M.; Zhu, Q. Spatially Offset Raman Spectroscopy Combined with Attention-Based LSTM for Freshness Evaluation of Shrimp. Sensors 2023, 23, 2827. https://doi.org/10.3390/s23052827
Liu Z, Yang Y, Huang M, Zhu Q. Spatially Offset Raman Spectroscopy Combined with Attention-Based LSTM for Freshness Evaluation of Shrimp. Sensors. 2023; 23(5):2827. https://doi.org/10.3390/s23052827
Chicago/Turabian StyleLiu, Zhenfang, Yu Yang, Min Huang, and Qibing Zhu. 2023. "Spatially Offset Raman Spectroscopy Combined with Attention-Based LSTM for Freshness Evaluation of Shrimp" Sensors 23, no. 5: 2827. https://doi.org/10.3390/s23052827
APA StyleLiu, Z., Yang, Y., Huang, M., & Zhu, Q. (2023). Spatially Offset Raman Spectroscopy Combined with Attention-Based LSTM for Freshness Evaluation of Shrimp. Sensors, 23(5), 2827. https://doi.org/10.3390/s23052827