Computer Vision Applications in Intelligent Transportation Systems: A Survey
Abstract
:1. Introduction
- CV applications in the field of ITS, along with the methods used, datasets, performance evaluation criteria, and success rates, are examined in a holistic and comprehensive way.
- The problems and application areas addressed by CV applications in ITS are investigated.
- The potential effects of CV studies on the transportation sector are evaluated.
- The applicability, contributions, shortcomings, challenges, future research areas, and trends of CV applications in ITS are summarized.
- Suggestions are made that will aid in improving the efficiency and effectiveness of transportation systems, increasing their safety levels, and making them smarter through CV studies in the future.
- This research surveys over 300 studies that shed light on the development of CV techniques in the field of ITS. These studies have been published in journals listed in top electronic libraries and presented at leading conferences. The survey further presents recent academic papers and review articles that can be consulted by researchers aiming to conduct detailed analysis of the categories of CV applications.
- It is believed that this survey can provide useful insights for researchers working on the potential effects of CV techniques, the automation of transportation systems, and the improvement of the efficiency and safety of ITS.
2. Computer Vision Studies in the Field of ITS
2.1. Evolution of Computer Vision Studies
2.1.1. Handcrafted Techniques
2.1.2. Machine Learning and Deep Learning Methods
2.1.3. Deep Neural Networks (DNNs)
2.1.4. Convolutional Neural Networks (CNNs)
2.1.5. Recurrent Neural Networks (RNNs)
2.1.6. Generative Adversarial Networks (GANs)
2.1.7. Other Methods
2.2. Computer Vision Functions
3. Computer Vision Applications in Intelligent Transportation Systems
3.1. Automatic Number Plate Recognition (ANPR)
3.2. TrafficSign Detection and Recognition
3.3. Vehicle Detection and Classification
3.4. Pedestrian Detection
3.5. Lane Line Detection
3.6. Obstacle Detection
3.7. Anomaly Detection in Video Surveillance Cameras
3.8. Structural Damage Detection
3.9. Autonomous Vehicle Applications
3.10. Other Applications
4. Discussions and Perspectives
4.1. Applicability
4.2. Contributions of Computer Vision Studies
4.3. Open Challenges in Computer Vision Studies
4.4. Future Research Directions and Trends
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, Y.; Wang, P.; Ma, M. Intelligent Transportation System (ITS): Concept, Challenge and Opportunity. In Proceedings of the 2017 IEEE 3rd International Conference on Big Data Security On cloud (Bigdatasecurity), IEEE International Conference on High Performance and Smart Computing (HPSC), and IEEE International Conference on Intelligent Data and Security (IDS), Beijing, China, 26–28 May 2017; IEEE: Beijing, China, 2017; pp. 167–172. [Google Scholar]
- Porter, M. Towards Safe and Equitable Intelligent Transportation Systems: Leveraging Stochastic Control Theory in Attack Detection; The University of Michigan: Michigan, MI, USA, 2021. [Google Scholar]
- Wang, Y.; Zhang, D.; Liu, Y.; Dai, B.; Lee, L.H. Enhancing Transportation Systems via Deep Learning: A Survey. Transp. Res. Part C Emerg. Technol. 2019, 99, 144–163. [Google Scholar] [CrossRef]
- Parveen, S.; Chadha, R.S.; Noida, C.; Kumar, I.P.; Singh, J. Artificial Intelligence in Transportation Industry. Int. J. Innov. Sci. Res. Technol. 2022, 7, 1274–1283. [Google Scholar]
- Yuan, Y.; Xiong, Z.; Wang, Q. An Incremental Framework for Video-Based Traffic Sign Detection, Tracking, and Recognition. IEEE Trans. Intell. Transp. Syst. 2016, 18, 1918–1929. [Google Scholar] [CrossRef]
- Sharma, V.; Gupta, M.; Kumar, A.; Mishra, D. Video Processing Using Deep Learning Techniques: A Systematic Literature Review. IEEE Access 2021, 9, 139489–139507. [Google Scholar] [CrossRef]
- Loce, R.P.; Bernal, E.A.; Wu, W.; Bernal, E.A.; Bala, R. Computer Vision in Roadway Transportation Systems: A Survey Process Mining and Data Automation View Project Gait Segmentation View Project Computer Vision in Roadway Transportation Systems: A Survey Computer Vision in Roadway Transportation Systems: A Survey. Artic. J. Electron. Imaging 2013, 22, 041121. [Google Scholar] [CrossRef]
- Patrikar, D.R.; Parate, M.R. Anomaly Detection Using Edge Computing in Video Surveillance System: Review. Int. J. Multimed. Inf. Retr. 2022, 11, 85–110. [Google Scholar] [CrossRef] [PubMed]
- Nanni, L.; Ghidoni, S.; Brahnam, S. Handcrafted vs. Non-Handcrafted Features for Computer Vision Classification. Pattern Recognit. 2017, 71, 158–172. [Google Scholar] [CrossRef]
- Varshney, H.; Khan, R.A.; Khan, U.; Verma, R. Approaches of Artificial Intelligence and Machine Learning in Smart Cities: Critical Review. IOP Conf. Ser. Mater Sci. Eng. 2021, 1022, 012019. [Google Scholar] [CrossRef]
- Mittal, D.; Reddy, A.; Ramadurai, G.; Mitra, K.; Ravindran, B. Training a Deep Learning Architecture for Vehicle Detection Using Limited Heterogeneous Traffic Data. In Proceedings of the 2018 10th International Conference on Communication Systems & Networks (COMSNETS), Bengaluru, India, 3–7 January 2018; pp. 294–589. [Google Scholar]
- Alam, A.; Jaffery, Z.A.; Sharma, H. A Cost-Effective Computer Vision-Based Vehicle Detection System. Concurr. Eng. 2022, 30, 148–158. [Google Scholar] [CrossRef]
- Vishal, K.; Arvind, C.S.; Mishra, R.; Gundimeda, V. Traffic Light Recognition for Autonomous Vehicles by Admixing the Traditional ML and DL. In Proceedings of the Eleventh International Conference on Machine Vision (ICMV 2018), Munich, Germany, 1–3 November 2018; SPIE: Bellingham, WA, USA, 2019; Volume 11041, pp. 126–133. [Google Scholar]
- Al-Shemarry, M.S.; Li, Y. Developing Learning-Based Preprocessing Methods for Detecting Complicated Vehicle Licence Plates. IEEE Access 2020, 8, 170951–170966. [Google Scholar] [CrossRef]
- Greenhalgh, J.; Mirmehdi, M. Real-Time Detection and Recognition of Road Traffic Signs. IEEE Trans. Intell. Transp. Syst. 2012, 13, 1498–1506. [Google Scholar] [CrossRef]
- Maldonado-Bascón, S.; Lafuente-Arroyo, S.; Gil-Jimenez, P.; Gómez-Moreno, H.; López-Ferreras, F. Road-Sign Detection and Recognition Based on Support Vector Machines. IEEE Trans. Intell. Transp. Syst. 2007, 8, 264–278. [Google Scholar] [CrossRef] [Green Version]
- Lafuente-Arroyo, S.; Gil-Jimenez, P.; Maldonado-Bascon, R.; López-Ferreras, F.; Maldonado-Bascon, S. Traffic Sign Shape Classification Evaluation I: SVM Using Distance to Borders. In Proceedings of the IEEE Proceedings. Intelligent Vehicles Symposium, Las Vegas, NV, USA, 6–8 June 2005; IEEE: New York, NY, USA, 2005; pp. 557–562. [Google Scholar]
- Li, C.; Yang, C. The Research on Traffic Sign Recognition Based on Deep Learning. In Proceedings of the 2016 16th International Symposium on Communications and Information Technologies (ISCIT), Qingdao, China, 26–28 September 2016; IEEE: New York, NY, USA, 2016; pp. 156–161. [Google Scholar]
- Oren, M.; Papageorgiou, C.; Sinha, P.; Osuna, E.; Poggio, T. Pedestrian Detection Using Wavelet Templates. In Proceedings of the Proceedings of the IEEE COMPUTER society Conference on Computer Vision and Pattern Recognition, San Juan, PR, USA, 17–19 June 1997; IEEE: New York, NY, USA, 1997; pp. 193–199. [Google Scholar]
- Papageorgiou, C.; Evgeniou, T.; Poggio, T. A Trainable Pedestrian Detection System. In Proceedings of the Proc. of Intelligent Vehicles, Seville, Spain, 23–24 March 1998; pp. 241–246. [Google Scholar]
- Pustokhina, I.V.; Pustokhin, D.A.; Rodrigues, J.J.P.C.; Gupta, D.; Khanna, A.; Shankar, K.; Seo, C.; Joshi, G.P. Automatic Vehicle License Plate Recognition Using Optimal K-Means with Convolutional Neural Network for Intelligent Transportation Systems. Ieee Access 2020, 8, 92907–92917. [Google Scholar] [CrossRef]
- Hu, F.; Tian, Z.; Li, Y.; Huang, S.; Feng, M. A Combined Clustering and Image Mapping Based Point Cloud Segmentation for 3D Object Detection. In Proceedings of the 2018 Chinese Control And Decision Conference (CCDC), Shenyang, China, 9–11 June 2018; IEEE: New York, NY, USA, 2018; pp. 1664–1669. [Google Scholar]
- Shan, B.; Zheng, S.; Ou, J. A Stereovision-Based Crack Width Detection Approach for Concrete Surface Assessment. KSCE J. Civ. Eng. 2016, 20, 803–812. [Google Scholar] [CrossRef]
- Hurtado-Gómez, J.; Romo, J.D.; Salazar-Cabrera, R.; Pachon de la Cruz, A.; Madrid Molina, J.M. Traffic Signal Control System Based on Intelligent Transportation System and Reinforcement Learning. Electronics 2021, 10, 2363. [Google Scholar] [CrossRef]
- Li, L.; Lv, Y.; Wang, F.-Y. Traffic Signal Timing via Deep Reinforcement Learning. IEEE/CAA J. Autom. Sin. 2016, 3, 247–254. [Google Scholar]
- Liu, Y.; Xu, P.; Zhu, L.; Yan, M.; Xue, L. Reinforced Attention Method for Real-Time Traffic Line Detection. J. Real Time Image Process. 2022, 19, 957–968. [Google Scholar] [CrossRef]
- Le, T.T.; Tran, S.T.; Mita, S.; Nguyen, T.D. Real Time Traffic Sign Detection Using Color and Shape-Based Features. In Proceedings of the ACIIDS, Hue City, Vietnam, 24–26 March 2010; pp. 268–278. [Google Scholar]
- Song, X.; Nevatia, R. Detection and Tracking of Moving Vehicles in Crowded Scenes. In Proceedings of the 2007 IEEE Workshop on Motion and Video Computing (WMVC’07), Austin, TX, USA, 23–24 February 2007; p. 4. [Google Scholar]
- Messelodi, S.; Modena, C.M.; Segata, N.; Zanin, M. A Kalman Filter Based Background Updating Algorithm Robust to Sharp Illumination Changes. In Proceedings of the ICIAP, Cagliari, Italy, 6–8 September 2005; Volume 3617, pp. 163–170. [Google Scholar]
- Okutani, I.; Stephanedes, Y.J. Dynamic Prediction of Traffic Volume through Kalman Filtering Theory. Transp. Res. Part B Methodol. 1984, 18, 1–11. [Google Scholar] [CrossRef]
- Ramrath, B.; Ari, L.; Doug, M. Insurance 2030—The Impact of AI on the Future of Insurance. 2021. Available online: https://www.mckinsey.com/industries/financial-services/our-insights/insurance-2030-the-impact-of-ai-on-the-future-of-insurance (accessed on 22 January 2023).
- Babu, K.; Kumar, C.; Kannaiyaraju, C. Face Recognition System Using Deep Belief Network and Particle Swarm Optimization. Intell. Autom. Soft Comput. 2022, 33, 317–329. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y. The Detection and Recognition of Bridges’ Cracks Based on Deep Belief Network. In Proceedings of the 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), Guangzhou, China, 21–24 July 2017; IEEE: New York, NY, USA, 2017; Volume 1, pp. 768–771. [Google Scholar]
- Maria, J.; Amaro, J.; Falcao, G.; Alexandre, L.A. Stacked Autoencoders Using Low-Power Accelerated Architectures for Object Recognition in Autonomous Systems. Neural Process. Lett. 2016, 43, 445–458. [Google Scholar] [CrossRef]
- Theis, L.; Shi, W.; Cunningham, A.; Huszár, F. Lossy Image Compression with Compressive Autoencoders. arXiv 2017, arXiv:1703.00395. [Google Scholar]
- Song, J.; Zhang, H.; Li, X.; Gao, L.; Wang, M.; Hong, R. Self-Supervised Video Hashing with Hierarchical Binary Auto-Encoder. IEEE Trans. Image Process. 2018, 27, 3210–3221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teh, Y.W.; Hinton, G.E. Rate-Coded Restricted Boltzmann Machines for Face Recognition. Adv. Neural Inf. Process. Syst. 2000, 13, 872–878. [Google Scholar]
- Ghahremannezhad, H.; Shi, H.; Liu, C. Real-Time Accident Detection in Traffic Surveillance Using Deep Learning. In Proceedings of the 2022 IEEE International Conference on Imaging Systems and Techniques (IST), Kaohsiung, Taiwan, 21–23 June 2022; IEEE: New York, NY, USA, 2022; pp. 1–6. [Google Scholar]
- Lange, S.; Ulbrich, F.; Goehring, D. Online Vehicle Detection Using Deep Neural Networks and Lidar Based Preselected Image Patches. In Proceedings of the 2016 IEEE Intelligent Vehicles Symposium (IV), Gothenburg, Sweden, 22 January 2016; IEEE: New York, NY, USA, 2016; pp. 954–959. [Google Scholar]
- Laroca, R.; Severo, E.; Zanlorensi, L.A.; Oliveira, L.S.; Gonçalves, G.R.; Schwartz, W.R.; Menotti, D. A Robust Real-Time Automatic License Plate Recognition Based on the YOLO Detector. In Proceedings of the 2018 International joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; IEEE: New York, NY, USA, 2018; pp. 1–10. [Google Scholar]
- Hashmi, S.N.; Kumar, K.; Khandelwal, S.; Lochan, D.; Mittal, S. Real Time License Plate Recognition from Video Streams Using Deep Learning. Int. J. Inf. Retr. Res. 2019, 9, 65–87. [Google Scholar] [CrossRef] [Green Version]
- Cirean, D.; Meier, U.; Masci, J.; Schmidhuber, J. A Committee of Neural Networks for Traffic Sign Classification. In Proceedings of the 2011 International Joint Conference on Neural Networks, San Jose, CA, USA, 31 July–5 August 2011; pp. 1918–1921. [Google Scholar]
- Sermanet, P.; LeCun, Y. Traffic Sign Recognition with Multi-Scale Convolutional Networks. In Proceedings of the 2011 International Joint Conference on Neural Networks, San Jose, CA, USA, 31 July–5 August 2011; IEEE: New York, NY, USA, 2011; pp. 2809–2813. [Google Scholar]
- Ciresan, D.; Meier, U.; Masci, J.; Schmidhuber, J. Multi-Column Deep Neural Network for Traffic Sign Classification. Neural Netw. 2012, 32, 333–338. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.; Fu, K.; Zhang, C. Traffic Sign Recognition with Hinge Loss Trained Convolutional Neural Networks. IEEE Trans. Intell. Transp. Syst. 2014, 15, 1991–2000. [Google Scholar] [CrossRef]
- Haloi, M. Traffic Sign Classification Using Deep Inception Based Convolutional Networks. arXiv 2015, arXiv:1511.02992. [Google Scholar]
- Qian, R.; Zhang, B.; Yue, Y.; Wang, Z.; Coenen, F. Robust Chinese Traffic Sign Detection and Recognition with Deep Convolutional Neural Network. In Proceedings of the 2015 11th International Conference on Natural Computation (ICNC), Zhangjiajie, China, 15–17 August 2015; IEEE: New York, NY, USA, 2015; pp. 791–796. [Google Scholar]
- Changzhen, X.; Cong, W.; Weixin, M.; Yanmei, S. A Traffic Sign Detection Algorithm Based on Deep Convolutional Neural Network. In Proceedings of the 2016 IEEE International Conference on Signal and Image Processing (ICSIP), Beijing, China, 13–15August 2016; IEEE: New York, NY, USA, 2016; pp. 676–679. [Google Scholar]
- Jung, S.; Lee, U.; Jung, J.; Shim, D.H. Real-Time Traffic Sign Recognition System with Deep Convolutional Neural Network. In Proceedings of the 2016 13th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Xi’an, China, 19–22 August 2016; IEEE: New York, NY, USA, 2016; pp. 31–34. [Google Scholar]
- Zeng, Y.; Xu, X.; Shen, D.; Fang, Y.; Xiao, Z. Traffic Sign Recognition Using Kernel Extreme Learning Machines with Deep Perceptual Features. IEEE Trans. Intell. Transp. Syst. 2016, 18, 1647–1653. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Q.; Wu, H.; Liu, Y. A Shallow Network with Combined Pooling for Fast Traffic Sign Recognition. Information 2017, 8, 45. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; Ang, M.H.; Rus, D. Car Detection for Autonomous Vehicle: LIDAR and Vision Fusion Approach through Deep Learning Framework. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24 September 2017; IEEE: New York, NY, USA, 2017; pp. 749–754. [Google Scholar]
- Wu, L.-T.; Lin, H.-Y. Overtaking Vehicle Detection Techniques Based on Optical Flow and Convolutional Neural Network. In Proceedings of the VEHITS, Madeira, Portugal, 16–18 March 2018; pp. 133–140. [Google Scholar]
- Pillai, U.K.K.; Valles, D. An Initial Deep CNN Design Approach for Identification of Vehicle Color and Type for Amber and Silver Alerts. In Proceedings of the 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 27–30 January 2021; IEEE: New York, NY, USA, 2021; pp. 903–908. [Google Scholar]
- Shvai, N.; Hasnat, A.; Meicler, A.; Nakib, A. Accurate Classification for Automatic Vehicle-Type Recognition Based on Ensemble Classifiers. IEEE Trans. Intell. Transp. Syst. 2019, 21, 1288–1297. [Google Scholar] [CrossRef]
- Yi, S. Pedestrian Behavior Modeling and Understanding in Crowds. Doctoral Dissertation, The Chinese University of Hong Kong, Hong Kong, 2016. [Google Scholar]
- Ouyang, W.; Wang, X. Joint Deep Learning for Pedestrian Detection. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 2056–2063. [Google Scholar]
- Fukui, H.; Yamashita, T.; Yamauchi, Y.; Fujiyoshi, H.; Murase, H. Pedestrian Detection Based on Deep Convolutional Neural Network with Ensemble Inference Network. In Proceedings of the 2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, Republic of Korea, 28 June–1 July 2015; IEEE: New York, NY, USA, 2015; pp. 223–228. [Google Scholar]
- John, V.; Mita, S.; Liu, Z.; Qi, B. Pedestrian Detection in Thermal Images Using Adaptive Fuzzy C-Means Clustering and Convolutional Neural Networks. In Proceedings of the 2015 14th IAPR International Conference on Machine Vision Applications (MVA), Tokyo, Japan, 18–22 May 2015; IEEE: New York, NY, USA, 2015; pp. 246–249. [Google Scholar]
- Schlosser, J.; Chow, C.K.; Kira, Z. Fusing Lidar and Images for Pedestrian Detection Using Convolutional Neural Networks. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; IEEE: New York, NY, USA, 2016; pp. 2198–2205. [Google Scholar]
- Kim, J.; Lee, M. Robust Lane Detection Based on Convolutional Neural Network and Random Sample Consensus. In Proceedings of the Neural Information Processing: 21st International Conference, ICONIP 2014, Kuching, Malaysia, 3–6 November 2014; Part I 21. Springer: Berlin/Heidelberg, Germany, 2014; pp. 454–461. [Google Scholar]
- Huval, B.; Wang, T.; Tandon, S.; Kiske, J.; Song, W.; Pazhayampallil, J.; Andriluka, M.; Rajpurkar, P.; Migimatsu, T.; Cheng-Yue, R. An Empirical Evaluation of Deep Learning on Highway Driving. arXiv 2015, arXiv:1504.01716. [Google Scholar]
- Li, J.; Mei, X.; Prokhorov, D.; Tao, D. Deep Neural Network for Structural Prediction and Lane Detection in Traffic Scene. IEEE Trans. Neural Netw. Learn. Syst. 2016, 28, 690–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-Cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Shao, J.; Loy, C.-C.; Kang, K.; Wang, X. Slicing Convolutional Neural Network for Crowd Video Understanding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 5620–5628. [Google Scholar]
- Sabokrou, M.; Fayyaz, M.; Fathy, M.; Moayed, Z.; Klette, R. Deep-Anomaly: Fully Convolutional Neural Network for Fast Anomaly Detection in Crowded Scenes. Comput. Vis. Image Underst. 2018, 172, 88–97. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Shao, J.; He, C. Abnormal Event Detection for Video Surveillance Using Deep One-Class Learning. Multimed Tools Appl. 2019, 78, 3633–3647. [Google Scholar] [CrossRef]
- Sabih, M.; Vishwakarma, D.K. Crowd Anomaly Detection with LSTMs Using Optical Features and Domain Knowledge for Improved Inferring. Vis. Comput. 2022, 38, 1719–1730. [Google Scholar] [CrossRef]
- Zhang, A.; Wang, K.C.P.; Li, B.; Yang, E.; Dai, X.; Peng, Y.; Fei, Y.; Liu, Y.; Li, J.Q.; Chen, C. Automated Pixel-level Pavement Crack Detection on 3D Asphalt Surfaces Using a Deep-learning Network. Comput.-Aided Civ. Infrastruct. Eng. 2017, 32, 805–819. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, F.; Zhang, Y.D.; Zhu, Y.J. Road Crack Detection Using Deep Convolutional Neural Network. In Proceedings of the 2016 IEEE international conference on image processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; IEEE: New York, NY, USA, 2016; pp. 3708–3712. [Google Scholar]
- Gulgec, N.S.; Takáč, M.; Pakzad, S.N. Structural Damage Detection Using Convolutional Neural Networks. In Model Validation and Uncertainty Quantification, Proceedings of the 35th IMAC, A Conference and Exposition on Structural Dynamics; Springer: Berlin/Heidelberg, Germany, 2017; Volume 3, pp. 331–337. [Google Scholar]
- Protopapadakis, E.; Voulodimos, A.; Doulamis, A.; Doulamis, N.; Stathaki, T. Automatic Crack Detection for Tunnel Inspection Using Deep Learning and Heuristic Image Post-Processing. Appl. Intell. 2019, 49, 2793–2806. [Google Scholar] [CrossRef]
- Mandal, V.; Uong, L.; Adu-Gyamfi, Y. Automated Road Crack Detection Using Deep Convolutional Neural Networks. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; IEEE: New York, NY, USA, 2018; pp. 5212–5215. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Li, S.; Zhao, X. Convolutional Neural Networks-Based Crack Detection for Real Concrete Surface. In Proceedings of the Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2018, Denver, CO, USA, 5–8 March 2018; SPIE: Bellingham, WA, USA, 2018; Volume 10598, pp. 955–961. [Google Scholar]
- Ahmed, T.U.; Hossain, M.S.; Alam, M.J.; Andersson, K. An Integrated CNN-RNN Framework to Assess Road Crack. In Proceedings of the 2019 22nd International Conference on Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 18–20 December 2019; IEEE: New York, NY, USA, 2019; pp. 1–6. [Google Scholar]
- Nguyen, N.H.T.; Perry, S.; Bone, D.; Le, H.T.; Nguyen, T.T. Two-Stage Convolutional Neural Network for Road Crack Detection and Segmentation. Expert Syst. Appl. 2021, 186, 115718. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Z.; Wang, H.; Liu, K. High-Speed Railway Catenary Components Detection Using the Cascaded Convolutional Neural Networks. In Proceedings of the 2017 IEEE International Conference on Imaging Systems and Techniques (IST), Beijing, China, 18–20 October 2017; IEEE: New York, NY, USA, 2017; pp. 1–6. [Google Scholar]
- Bojarski, M.; del Testa, D.; Dworakowski, D.; Firner, B.; Flepp, B.; Goyal, P.; Jackel, L.D.; Monfort, M.; Muller, U.; Zhang, J. End to End Learning for Self-Driving Cars. arXiv 2016, arXiv:1604.07316. [Google Scholar]
- Farkh, R.; Alhuwaimel, S.; Alzahrani, S.; al Jaloud, K.; Tabrez Quasim, M. Deep Learning Control for Autonomous Robot. Comput. Mater. Contin. 2022, 72, 2811–2824. [Google Scholar] [CrossRef]
- Nose, Y.; Kojima, A.; Kawabata, H.; Hironaka, T. A Study on a Lane Keeping System Using CNN for Online Learning of Steering Control from Real Time Images. In Proceedings of the 2019 34th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), Jeju, Republic of Korea, 23–26 June 2019; IEEE: New York, NY, USA, 2019; pp. 1–4. [Google Scholar]
- Chen, Z.; Huang, X. End-to-End Learning for Lane Keeping of Self-Driving Cars. In Proceedings of the 2017 IEEE intelligent vehicles symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; IEEE: New York, NY, USA, 2017; pp. 1856–1860. [Google Scholar]
- Rateke, T.; von Wangenheim, A. Passive Vision Road Obstacle Detection: A Literature Mapping. Int. J. Comput. Appl. 2022, 44, 376–395. [Google Scholar] [CrossRef]
- Ali, R.; Chuah, J.H.; Talip, M.S.A.; Mokhtar, N.; Shoaib, M.A. Structural Crack Detection Using Deep Convolutional Neural Networks. Autom. Constr. 2022, 133, 103989. [Google Scholar] [CrossRef]
- GONG, W.; SHI, Z.; Qiang, J.I. Non-Segmented Chinese License Plate Recognition Algorithm Based on Deep Neural Networks. In Proceedings of the 2020 Chinese Control and Decision Conference (CCDC), Hefei, China, 22–24 August 2020; IEEE: New York, NY, USA, 2020; pp. 66–71. [Google Scholar]
- Chen, S.; Zhang, S.; Shang, J.; Chen, B.; Zheng, N. Brain-Inspired Cognitive Model with Attention for Self-Driving Cars. IEEE Trans. Cogn. Dev. Syst. 2017, 11, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Medel, J.R.; Savakis, A. Anomaly Detection in Video Using Predictive Convolutional Long Short-Term Memory Networks. arXiv 2016, arXiv:1612.00390. [Google Scholar]
- Medel, J.R. Anomaly Detection Using Predictive Convolutional Long Short-Term Memory Units; Rochester Institute of Technology: Rochester, NY, USA, 2016; ISBN 1369443943. [Google Scholar]
- Luo, W.; Liu, W.; Gao, S. Remembering History with Convolutional Lstm for Anomaly Detection. In Proceedings of the 2017 IEEE International Conference on Multimedia and Expo (ICME), Hong Kong, 10–14 July 2017; IEEE: New York, NY, USA, 2017; pp. 439–444. [Google Scholar]
- Patraucean, V.; Handa, A.; Cipolla, R. Spatio-Temporal Video Autoencoder with Differentiable Memory. arXiv 2015, arXiv:1511.06309. [Google Scholar]
- Li, Y.; Cai, Y.; Liu, J.; Lang, S.; Zhang, X. Spatio-Temporal Unity Networking for Video Anomaly Detection. IEEE Access 2019, 7, 172425–172432. [Google Scholar] [CrossRef]
- Wang, L.; Tan, H.; Zhou, F.; Zuo, W.; Sun, P. Unsupervised Anomaly Video Detection via a Double-Flow Convlstm Variational Autoencoder. IEEE Access 2022, 10, 44278–44289. [Google Scholar] [CrossRef]
- Kim, J.; Canny, J. Interpretable Learning for Self-Driving Cars by Visualizing Causal Attention. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2942–2950. [Google Scholar]
- Wang, X.; Che, Z.; Jiang, B.; Xiao, N.; Yang, K.; Tang, J.; Ye, J.; Wang, J.; Qi, Q. Robust Unsupervised Video Anomaly Detection by Multipath Frame Prediction. IEEE Trans. Neural. Netw. Learn. Syst. 2021, 33, 2301–2312. [Google Scholar] [CrossRef]
- Jackson, S.D.; Cuzzolin, F. SVD-GAN for Real-Time Unsupervised Video Anomaly Detection. In Proceedings of the British Machine Vision Conference (BMVC), Virtual, 22–25 November 2021. [Google Scholar]
- Song, H.; Sun, C.; Wu, X.; Chen, M.; Jia, Y. Learning Normal Patterns via Adversarial Attention-Based Autoencoder for Abnormal Event Detection in Videos. IEEE Trans. Multimed. 2019, 22, 2138–2148. [Google Scholar] [CrossRef]
- Ganokratanaa, T.; Aramvith, S.; Sebe, N. Unsupervised Anomaly Detection and Localization Based on Deep Spatiotemporal Translation Network. IEEE Access 2020, 8, 50312–50329. [Google Scholar] [CrossRef]
- Chen, D.; Yue, L.; Chang, X.; Xu, M.; Jia, T. NM-GAN: Noise-Modulated Generative Adversarial Network for Video Anomaly Detection. Pattern Recognit. 2021, 116, 107969. [Google Scholar] [CrossRef]
- Huang, C.; Wen, J.; Xu, Y.; Jiang, Q.; Yang, J.; Wang, Y.; Zhang, D. Self-Supervised Attentive Generative Adversarial Networks for Video Anomaly Detection. In IEEE Transactions on Neural Networks and Learning Systems; IEEE: New York, NY, USA, 2022. [Google Scholar]
- Darapaneni, N.; Mogeraya, K.; Mandal, S.; Narayanan, A.; Siva, P.; Paduri, A.R.; Khan, F.; Agadi, P.M. Computer Vision Based License Plate Detection for Automated Vehicle Parking Management System. In Proceedings of the 2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, NY, USA, 28–31 October 2020; IEEE: New York, NY, USA, 2020; pp. 800–805. [Google Scholar]
- Vetriselvi, T.; Lydia, E.L.; Mohanty, S.N.; Alabdulkreem, E.; Al-Otaibi, S.; Al-Rasheed, A.; Mansour, R.F. Deep Learning Based License Plate Number Recognition for Smart Cities. CMC Comput. Mater Contin. 2022, 70, 2049–2064. [Google Scholar] [CrossRef]
- Duman, E.; Erdem, O.A. Anomaly Detection in Videos Using Optical Flow and Convolutional Autoencoder. IEEE Access 2019, 7, 183914–183923. [Google Scholar] [CrossRef]
- Xing, J.; Nguyen, M.; Qi Yan, W. The Improved Framework for Traffic Sign Recognition Using Guided Image Filtering. SN Comput. Sci. 2022, 3, 461. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, S.; Wang, S.; Metaxas, D.N. Multispectral Deep Neural Networks for Pedestrian Detection. arXiv 2016, arXiv:1611.02644. [Google Scholar]
- Dewangan, D.K.; Sahu, S.P. Road Detection Using Semantic Segmentation-Based Convolutional Neural Network for Intelligent Vehicle System. In Proceedings of the Data Engineering and Communication Technology: Proceedings of ICDECT 2020; Springer: Berlin/Heidelberg, Germany, 2021; pp. 629–637. [Google Scholar]
- Walk, S.; Schindler, K.; Schiele, B. Disparity Statistics for Pedestrian Detection: Combining Appearance, Motion and Stereo. In Proceedings of the Computer Vision–ECCV 2010: 11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 5–11, 2010, Proceedings, Part VI 11; Springer: Berlin/Heidelberg, Germany, 2010; pp. 182–195. [Google Scholar]
- Liu, Z.; Yu, C.; Zheng, B. Any Type of Obstacle Detection in Complex Environments Based on Monocular Vision. In Proceedings of the 32nd Chinese Control Conference, Xi’an, China, 26–28 July 2013; IEEE: New York, NY, USA, 2013; pp. 7692–7697. [Google Scholar]
- Pantilie, C.D.; Nedevschi, S. Real-Time Obstacle Detection in Complex Scenarios Using Dense Stereo Vision and Optical Flow. In Proceedings of the 13th International IEEE Conference on Intelligent Transportation Systems, Funchal, Madeira Island, Portugal, 19–22 September 2010; IEEE: New York, NY, USA, 2010; pp. 439–444. [Google Scholar]
- Dairi, A.; Harrou, F.; Sun, Y.; Senouci, M. Obstacle Detection for Intelligent Transportation Systems Using Deep Stacked Autoencoder and $ k $-Nearest Neighbor Scheme. IEEE Sens. J. 2018, 18, 5122–5132. [Google Scholar] [CrossRef] [Green Version]
- Ci, W.; Xu, T.; Lin, R.; Lu, S. A Novel Method for Unexpected Obstacle Detection in the Traffic Environment Based on Computer Vision. Appl. Sci. 2022, 12, 8937. [Google Scholar] [CrossRef]
- Cha, Y.; Choi, W.; Büyüköztürk, O. Deep Learning-based Crack Damage Detection Using Convolutional Neural Networks. Comput.-Aided Civ. Infrastruct. Eng. 2017, 32, 361–378. [Google Scholar] [CrossRef]
- Kortmann, F.; Fassmeyer, P.; Funk, B.; Drews, P. Watch out, Pothole! Featuring Road Damage Detection in an End-to-End System for Autonomous Driving. Data Knowl Eng 2022, 142, 102091. [Google Scholar] [CrossRef]
- Liu, J.; Yang, X.; Lau, S.; Wang, X.; Luo, S.; Lee, V.C.; Ding, L. Automated Pavement Crack Detection and Segmentation Based on Two-step Convolutional Neural Network. Comput.-Aided Civ. Infrastruct. Eng. 2020, 35, 1291–1305. [Google Scholar] [CrossRef]
- Muhammad, K.; Hussain, T.; Ullah, H.; del Ser, J.; Rezaei, M.; Kumar, N.; Hijji, M.; Bellavista, P.; de Albuquerque, V.H.C. Vision-Based Semantic Segmentation in Scene Understanding for Autonomous Driving: Recent Achievements, Challenges, and Outlooks. In IEEE Transactions on Intelligent Transportation Systems; IEEE: New York, NY, USA, 2022. [Google Scholar]
- Benamer, I.; Yahiouche, A.; Ghenai, A. Deep Learning Environment Perception and Self-Tracking for Autonomous and Connected Vehicles. In Proceedings of the Machine Learning for Networking: Third International Conference, MLN 2020, Paris, France, November 24–26, 2020, Revised Selected Papers 3; Springer: Berlin/Heidelberg, Germany, 2021; pp. 305–319. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. Adv. Neura. Inf. Process. Syst. 2017, 30, 6000–6010. [Google Scholar]
- Zang, X.; Li, G.; Gao, W. Multidirection and Multiscale Pyramid in Transformer for Video-Based Pedestrian Retrieval. IEEE Trans. Ind. Inf. 2022, 18, 8776–8785. [Google Scholar] [CrossRef]
- Wang, H.; Chen, J.; Huang, Z.; Li, B.; Lv, J.; Xi, J.; Wu, B.; Zhang, J.; Wu, Z. FPT: Fine-Grained Detection of Driver Distraction Based on the Feature Pyramid Vision Transformer. In IEEE Transactions on Intelligent Transportation Systems; IEEE: New York, NY, USA, 2022. [Google Scholar]
- Kirillov, A.; He, K.; Girshick, R.; Rother, C.; Dollár, P. Panoptic Segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 9404–9413. [Google Scholar]
- Rafie, M.; Zhang, Y.; Liu, S. Evaluation Framework for Video Coding for Machines. ISO/IEC JTC 2021, 1, 3–4. [Google Scholar]
- Manikoth, N.; Loce, R.; Bernal, E.; Wu, W. Survey of Computer Vision in Roadway Transportation Systems. In Proceedings of the Visual Information Processing and Communication III; SPIE: Bellingham, WA, USA, 2012; Volume 8305, pp. 258–276. [Google Scholar]
- Buch, N.; Velastin, S.A.; Orwell, J. A Review of Computer Vision Techniques for the Analysis of Urban Traffic. IEEE Trans. Intell. Transp. Syst. 2011, 12, 920–939. [Google Scholar] [CrossRef]
- Mufti, N.; Shah, S.A.A. Automatic Number Plate Recognition: A Detailed Survey of Relevant Algorithms. Sensors 2021, 21, 3028. [Google Scholar]
- Oliveira-Neto, F.M.; Han, L.D.; Jeong, M.K. An Online Self-Learning Algorithm for License Plate Matching. IEEE Trans. Intell. Transp. Syst. 2013, 14, 1806–1816. [Google Scholar] [CrossRef]
- Hommos, O.; Al-Qahtani, A.; Farhat, A.; Al-Zawqari, A.; Bensaali, F.; Amira, A.; Zhai, X. HD Qatari ANPR System. In Proceedings of the 2016 International Conference on Industrial Informatics and Computer Systems (CIICS); IEEE: New York, NY, USA, 2016; pp. 1–5. [Google Scholar]
- Farhat, A.A.H.; Al-Zawqari, A.; Hommos, O.; Al-Qahtani, A.; Bensaali, F.; Amira, A.; Zhai, X. OCR-Based Hardware Implementation for Qatari Number Plate on the Zynq SoC. In Proceedings of the 2017 9th IEEE-GCC Conference and Exhibition (GCCCE); IEEE: New York, NY, USA, 2017; pp. 1–9. [Google Scholar]
- Molina-Moreno, M.; González-Díaz, I.; Díaz-de-María, F. Efficient Scale-Adaptive License Plate Detection System. IEEE Trans. Intell. Transp. Syst. 2018, 20, 2109–2121. [Google Scholar] [CrossRef]
- Sasi, A.; Sharma, S.; Cheeran, A.N. Automatic Car Number Plate Recognition. In Proceedings of the 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, India, 17–18 March 2017; IEEE: New York, NY, USA, 2017; pp. 1–6. [Google Scholar]
- Ahmad, I.S.; Boufama, B.; Habashi, P.; Anderson, W.; Elamsy, T. Automatic License Plate Recognition: A Comparative Study. In Proceedings of the 2015 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT); IEEE: New York, NY, USA, 2015; pp. 635–640. [Google Scholar]
- Omran, S.S.; Jarallah, J.A. Iraqi License Plate Localization and Recognition System Using Neural Network. In Proceedings of the 2017 Second Al-Sadiq International Conference on Multidisciplinary in IT and Communication Science and Applications (AIC-MITCSA), Baghdad, Iraq, 30–31 December 2017; IEEE: New York, NY, USA, 2017; pp. 73–78. [Google Scholar]
- Weihong, W.; Jiaoyang, T. Research on License Plate Recognition Algorithms Based on Deep Learning in Complex Environment. IEEE Access 2020, 8, 91661–91675. [Google Scholar] [CrossRef]
- Silva, S.M.; Jung, C.R. Real-Time License Plate Detection and Recognition Using Deep Convolutional Neural Networks. J. Vis. Commun. Image Represent. 2020, 71, 102773. [Google Scholar] [CrossRef]
- Akhtar, Z.; Ali, R. Automatic Number Plate Recognition Using Random Forest Classifier. SN Comput. Sci. 2020, 1, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Calitz, A.; Hill, M. Automated License Plate Recognition Using Existing University Infrastructure and Different Camera Angles. Afr. J. Inf. Syst. 2020, 12, 4. [Google Scholar]
- Desai, G.G.; Bartakke, P.P. Real-Time Implementation of Indian License Plate Recognition System. In Proceedings of the 2018 IEEE Punecon; IEEE: New York, NY, USA, 2018; pp. 1–5. [Google Scholar]
- Joshi, G.; Kaul, S.; Singh, A. Automated Vehicle Numberplate Detection and Recognition. In Proceedings of the 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 28–29 January 2021; IEEE: New York, NY, USA, 2021; pp. 465–469. [Google Scholar]
- Shashirangana, J.; Padmasiri, H.; Meedeniya, D.; Perera, C. Automated License Plate Recognition: A Survey on Methods and Techniques. IEEE Access 2020, 9, 11203–11225. [Google Scholar] [CrossRef]
- Singh, V.; Srivastava, A.; Kumar, S.; Ghosh, R. A Structural Feature Based Automatic Vehicle Classification System at Toll Plaza. In Proceedings of the 4th International Conference on Internet of Things and Connected Technologies (ICIoTCT), 2019: Internet of Things and Connected Technologies; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–10. [Google Scholar]
- Sferle, R.M.; Moisi, E.V. Automatic Number Plate Recognition for a Smart Service Auto. In Proceedings of the 2019 15th International Conference on Engineering of Modern Electric Systems (EMES), Oradea, Romania, 13–14 June 2019; IEEE: New York, NY, USA, 2019; pp. 57–60. [Google Scholar]
- Slimani, I.; Zaarane, A.; Hamdoun, A.; Atouf, I. Vehicle License Plate Localization and Recognition System for Intelligent Transportation Applications. In Proceedings of the 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), Paris, France, 23–26 April 2019; IEEE: New York, NY, USA, 2019; pp. 1592–1597. [Google Scholar]
- Ruta, A.; Li, Y.; Liu, X. Robust Class Similarity Measure for Traffic Sign Recognition. IEEE Trans. Intell. Transp. Syst. 2010, 11, 846–855. [Google Scholar] [CrossRef]
- Zaklouta, F.; Stanciulescu, B.; Hamdoun, O. Traffic Sign Classification Using Kd Trees and Random Forests. In Proceedings of the 2011 International Joint Conference on Neural Networks; IEEE: New York, NY, USA, 2011; pp. 2151–2155. [Google Scholar]
- Dalal, N.; Triggs, B. Histograms of Oriented Gradients for Human Detection. In Proceedings of the 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05), San Diego, CA, USA, 21–23 September 2005; IEEE: New York, NY, USA, 2005; Volume 1, pp. 886–893. [Google Scholar]
- Li, Y.; Li, Z.; Li, L. Missing Traffic Data: Comparison of Imputation Methods. IET Intell. Transp. Syst. 2014, 8, 51–57. [Google Scholar] [CrossRef]
- Zaklouta, F.; Stanciulescu, B. Real-Time Traffic-Sign Recognition Using Tree Classifiers. IEEE Trans. Intell. Transp. Syst. 2012, 13, 1507–1514. [Google Scholar] [CrossRef]
- Rajesh, R.; Rajeev, K.; Suchithra, K.; Lekhesh, V.P.; Gopakumar, V.; Ragesh, N.K. Coherence Vector of Oriented Gradients for Traffic Sign Recognition Using Neural Networks. In Proceedings of the 2011 International Joint Conference on Neural Networks; IEEE: New York, NY, USA, 2011; pp. 907–910. [Google Scholar]
- Boi, F.; Gagliardini, L. A Support Vector Machines Network for Traffic Sign Recognition. In Proceedings of the 2011 International Joint Conference on Neural Networks; IEEE: New York, NY, USA, 2011; pp. 2210–2216. [Google Scholar]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.-L.; Yin, F.; Wang, D.-H.; Wang, Q.-F. Chinese Handwriting Recognition Contest 2010. In Proceedings of the 2010 Chinese Conference on Pattern Recognition (CCPR); IEEE: New York, NY, USA, 2010; pp. 1–5. [Google Scholar]
- Salakhutdinov, R.; Hinton, G. Learning and Evaluaing Deep Bolztmann Machines. 2008. [Google Scholar]
- Zhang, Y.; Wang, Z.; Song, R.; Yan, C.; Qi, Y. Detection-by-Tracking of Traffic Signs in Videos. Appl. Intell. 2021, 52, 8226–8242. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-Cnn: Towards Real-Time Object Detection with Region Proposal Networks. Adv. Neural Inf. Process. Syst. 2015, 28, 2969239–2969250. [Google Scholar] [CrossRef] [Green Version]
- Sindhu, O.; Victer Paul, P. Computer Vision Model for Traffic Sign Recognition and Detection—A Survey. In Proceedings of the ICCCE 2018: Proceedings of the International Conference on Communications and Cyber Physical Engineering 2018; Springer: Berlin/Heidelberg, Germany, 2019; pp. 679–689. [Google Scholar]
- Marques, R.; Ribeiro, T.; Lopes, G.; Ribeiro, A.F. YOLOv3: Traffic Signs & Lights Detection and Recognition for Autonomous Driving. In Proceedings of the ICAART (3), Online, 3–5 February 2022; pp. 818–826. [Google Scholar]
- Arif, M.U.; Farooq, M.U.; Raza, R.H.; Lodhi, Z.; Hashmi, M.A.R. A Comprehensive Review of Vehicle Detection Techniques Under Varying Moving Cast Shadow Conditions Using Computer Vision and Deep Learning. IEEE Access 2022, 10, 1. [Google Scholar]
- Zhu, J.; Li, X.; Jin, P.; Xu, Q.; Sun, Z.; Song, X. Mme-Yolo: Multi-Sensor Multi-Level Enhanced Yolo for Robust Vehicle Detection in Traffic Surveillance. Sensors 2020, 21, 27. [Google Scholar] [CrossRef]
- Huang, S.; He, Y.; Chen, X. M-YOLO: A Nighttime Vehicle Detection Method Combining Mobilenet v2 and YOLO V3. In Proceedings of the Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2021; Volume 1883, p. 012094. [Google Scholar]
- Li, J.; Xu, Z.; Fu, L.; Zhou, X.; Yu, H. Domain Adaptation from Daytime to Nighttime: A Situation-Sensitive Vehicle Detection and Traffic Flow Parameter Estimation Framework. Transp. Res. Part C Emerg. Technol. 2021, 124, 102946. [Google Scholar] [CrossRef]
- Neto, J.; Santos, D.; Rossetti, R.J.F. Computer-Vision-Based Surveillance of Intelligent Transportation Systems. In Proceedings of the 2018 13th Iberian Conference on Information Systems and Technologies (CISTI), Caceres, Spain, 13–16 June 2018; IEEE: New York, NY, USA, 2018; pp. 1–5. [Google Scholar]
- Yang, Z.; Pun-Cheng, L.S.C. Vehicle Detection in Intelligent Transportation Systems and Its Applications under Varying Environments: A Review. Image Vis. Comput. 2018, 69, 143–154. [Google Scholar] [CrossRef]
- Gholamhosseinian, A.; Seitz, J. Vehicle Classification in Intelligent Transport Systems: An Overview, Methods and Software Perspective. IEEE Open J. Intell. Transp. Syst. 2021, 2, 173–194. [Google Scholar] [CrossRef]
- Niroomand, N.; Bach, C.; Elser, M. Robust Vehicle Classification Based on Deep Features Learning. IEEE Access 2021, 9, 95675–95685. [Google Scholar] [CrossRef]
- Wong, Z.J.; Goh, V.T.; Yap, T.T.V.; Ng, H. Vehicle Classification Using Convolutional Neural Network for Electronic Toll Collection. In Proceedings of the Computational Science and Technology: 6th ICCST 2019, Kota Kinabalu, Malaysia, 29–30 August 2019; Springer: Berlin/Heidelberg, Germany, 2020; pp. 169–177. [Google Scholar]
- Jiao, J.; Wang, H. Traffic Behavior Recognition from Traffic Videos under Occlusion Condition: A Kalman Filter Approach. Transp. Res. Rec. 2022, 2676, 55–65. [Google Scholar] [CrossRef]
- Bernal, E.A.; Li, Q.; Loce, R.P. U.S. Patent No. 10,262,328. Washington, DC: U.S. Patent and Trademark Office. 2019. Available online: https://patentimages.storage.googleapis.com/83/14/27/1d8b55b4bfe61a/US10262328.pdf (accessed on 12 January 2023).
- Tian, D.; Han, Y.; Wang, B.; Guan, T.; Wei, W. A Review of Intelligent Driving Pedestrian Detection Based on Deep Learning. Comput. Intell. Neurosci. 2021, 2021, 1–16. [Google Scholar] [CrossRef]
- Ali, A.T.; Dagless, E.L. Vehicle and Pedestrian Detection and Tracking. In Proceedings of the IEE Colloquium on Image Analysis for Transport Applications; IET: Stevenage, UK, 1990; pp. 1–5. [Google Scholar]
- Zhao, L.; Thorpe, C.E. Stereo-and Neural Network-Based Pedestrian Detection. IEEE Trans. Intell. Transp. Syst. 2000, 1, 148–154. [Google Scholar] [CrossRef] [Green Version]
- Dollar, P.; Wojek, C.; Schiele, B.; Perona, P. Pedestrian Detection: An Evaluation of the State of the Art. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 34, 743–761. [Google Scholar] [CrossRef]
- Leibe, B.; Seemann, E.; Schiele, B. Pedestrian Detection in Crowded Scenes. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 21–23 September 2005; IEEE: New York, NY, USA, 2005; Volume 1, pp. 878–885. [Google Scholar]
- Tuzel, O.; Porikli, F.; Meer, P. Pedestrian Detection via Classification on Riemannian Manifolds. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 1713–1727. [Google Scholar] [CrossRef]
- Enzweiler, M.; Gavrila, D.M. Monocular Pedestrian Detection: Survey and Experiments. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 31, 2179–2195. [Google Scholar] [CrossRef] [Green Version]
- Viola, P.; Jones, M.J. Robust Real-Time Face Detection. Int. J. Comput. Vis. 2004, 57, 137–154. [Google Scholar] [CrossRef]
- Pham, Q. Autonomous Vehicles and Their Impact on Road Transportations. Bachelor’s Thesis, JAMK University of Applied Sciences, Jyväskylä, Finland, May 2018. [Google Scholar]
- Sabzmeydani, P.; Mori, G. Detecting Pedestrians by Learning Shapelet Features. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition; IEEE: New York, NY, USA, 2007; pp. 1–8. [Google Scholar]
- Viola, P.; Jones, M.J.; Snow, D. Detecting Pedestrians Using Patterns of Motion and Appearance. Int. J. Comput. Vis. 2005, 63, 153–161. [Google Scholar] [CrossRef]
- Gall, J.; Yao, A.; Razavi, N.; van Gool, L.; Lempitsky, V. Hough Forests for Object Detection, Tracking, and Action Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 2188–2202. [Google Scholar] [CrossRef]
- Wu, B.; Nevatia, R. Detection and Tracking of Multiple, Partially Occluded Humans by Bayesian Combination of Edgelet Based Part Detectors. Int. J. Comput. Vis. 2007, 75, 247. [Google Scholar] [CrossRef]
- Tian, Y.; Luo, P.; Wang, X.; Tang, X. Deep Learning Strong Parts for Pedestrian Detection. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1904–1912. [Google Scholar]
- Zhang, S.; Yang, J.; Schiele, B. Occluded Pedestrian Detection through Guided Attention in Cnns. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6995–7003. [Google Scholar]
- Garcia-Bunster, G.; Torres-Torriti, M.; Oberli, C. Crowded Pedestrian Counting at Bus Stops from Perspective Transformations of Foreground Areas. IET Comput. Vis. 2012, 6, 296–305. [Google Scholar] [CrossRef]
- Chen, D.-Y.; Huang, P.-C. Visual-Based Human Crowds Behavior Analysis Based on Graph Modeling and Matching. IEEE Sens. J. 2013, 13, 2129–2138. [Google Scholar] [CrossRef]
- Stauffer, C.; Grimson, W.E.L. Adaptive Background Mixture Models for Real-Time Tracking. In Proceedings of the 1999 IEEE Computer Society Conference on Computer Vision and PATTERN recognition (Cat. No PR00149); IEEE: New York, NY, USA, 1999; Volume 2, pp. 246–252. [Google Scholar]
- Li, T.; Chang, H.; Wang, M.; Ni, B.; Hong, R.; Yan, S. Crowded Scene Analysis: A Survey. IEEE Trans. Circuits Syst. Video Technol. 2014, 25, 367–386. [Google Scholar] [CrossRef] [Green Version]
- Ge, W.; Collins, R.T.; Ruback, R.B. Vision-Based Analysis of Small Groups in Pedestrian Crowds. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 1003–1016. [Google Scholar]
- Luo, P.; Tian, Y.; Wang, X.; Tang, X. Switchable Deep Network for Pedestrian Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 899–906. [Google Scholar]
- Li, J.; Liang, X.; Shen, S.; Xu, T.; Feng, J.; Yan, S. Scale-Aware Fast R-CNN for Pedestrian Detection. IEEE Trans. Multimed. 2017, 20, 985–996. [Google Scholar] [CrossRef] [Green Version]
- Sindagi, V.A.; Patel, V.M. A Survey of Recent Advances in CNN-Based Single Image Crowd Counting and Density Estimation. Pattern Recognit. Lett. 2018, 107, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, G.; Singh, K.; Vishwakarma, D.K. Convolutional Neural Networks for Crowd Behaviour Analysis: A Survey. Vis. Comput. 2019, 35, 753–776. [Google Scholar] [CrossRef]
- Afsar, P.; Cortez, P.; Santos, H. Automatic Visual Detection of Human Behavior: A Review from 2000 to 2014. Expert. Syst. Appl. 2015, 42, 6935–6956. [Google Scholar] [CrossRef] [Green Version]
- Yun, S.; Yun, K.; Choi, J.; Choi, J.Y. Density-Aware Pedestrian Proposal Networks for Robust People Detection in Crowded Scenes. In Proceedings of the Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II 14; Springer: Berlin/Heidelberg, Germany, 2016; pp. 643–654. [Google Scholar]
- Brunetti, A.; Buongiorno, D.; Trotta, G.F.; Bevilacqua, V. Computer Vision and Deep Learning Techniques for Pedestrian Detection and Tracking: A Survey. Neurocomputing 2018, 300, 17–33. [Google Scholar] [CrossRef]
- Du, X.; El-Khamy, M.; Lee, J.; Davis, L. Fused DNN: A Deep Neural Network Fusion Approach to Fast and Robust Pedestrian Detection. In Proceedings of the 2017 IEEE winter conference on applications of computer vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017; IEEE: New York, NY, USA, 2017; pp. 953–961. [Google Scholar]
- Chen, W.; Wang, W.; Wang, K.; Li, Z.; Li, H.; Liu, S. Lane Departure Warning Systems and Lane Line Detection Methods Based on Image Processing and Semantic Segmentation: A Review. J. Traffic Transp. Eng. 2020, 7, 748–774. [Google Scholar] [CrossRef]
- Gopalan, R.; Hong, T.; Shneier, M.; Chellappa, R. A Learning Approach towards Detection and Tracking of Lane Markings. IEEE Trans. Intell. Transp. Syst. 2012, 13, 1088–1098. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.; Shin Yoon, J.; Shin, S.; Bailo, O.; Kim, N.; Lee, T.-H.; Seok Hong, H.; Han, S.-H.; So Kweon, I. Vpgnet: Vanishing Point Guided Network for Lane and Road Marking Detection and Recognition. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1947–1955. [Google Scholar]
- Tang, J.; Li, S.; Liu, P. A Review of Lane Detection Methods Based on Deep Learning. Pattern Recognit 2021, 111, 107623. [Google Scholar] [CrossRef]
- Waykole, S.; Shiwakoti, N.; Stasinopoulos, P. Review on Lane Detection and Tracking Algorithms of Advanced Driver Assistance System. Sustainability 2021, 13, 11417. [Google Scholar] [CrossRef]
- Mamun, A.; Ping, E.P.; Hossen, J.; Tahabilder, A.; Jahan, B. A Comprehensive Review on Lane Marking Detection Using Deep Neural Networks. Sensors 2022, 22, 7682. [Google Scholar] [CrossRef]
- Wang, Z.; Ren, W.; Qiu, Q. Lanenet: Real-Time Lane Detection Networks for Autonomous Driving. arXiv 2018, arXiv:1807.01726. [Google Scholar]
- Hou, Y.; Ma, Z.; Liu, C.; Loy, C.C. Learning Lightweight Lane Detection Cnns by Self Attention Distillation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1013–1021. [Google Scholar]
- van Gansbeke, W.; de Brabandere, B.; Neven, D.; Proesmans, M.; van Gool, L. End-to-End Lane Detection through Differentiable Least-Squares Fitting. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Republic of Korea, 27–28 October 2019. [Google Scholar]
- Canny, J. A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-8, 679–698. [Google Scholar] [CrossRef]
- Wedel, A.; Schoenemann, T.; Brox, T.; Cremers, D. Warpcut–Fast Obstacle Segmentation in Monocular Video. In Proceedings of the Pattern Recognition: 29th DAGM Symposium, Heidelberg, Germany, September 12-14, 2007. Proceedings 29; Springer: Berlin/Heidelberg, Germany, 2007; pp. 264–273. [Google Scholar]
- Gonzales, R.C.; Woods, R.E. Digital Image Processing, 2nd ed.; Prentice Hall: Hoboken, NJ, USA, 2002. [Google Scholar]
- Zebbara, K.; el Ansari, M.; Mazoul, A.; Oudani, H. A Fast Road Obstacle Detection Using Association and Symmetry Recognition. In Proceedings of the 2019 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS); IEEE: New York, NY, USA, 2019; pp. 1–5. [Google Scholar]
- Lucas, B.D.; Kanade, T. An Iterative Image Registration Technique with an Application to Stereo Vision. In Proceedings of the IJCAI’81: 7th International Joint Conference on Artificial Intelligence, Vancouver, BC, Canada, 24–28 August 1981; Volume 2, pp. 674–679. [Google Scholar]
- Farnebäck, G. Two-Frame Motion Estimation Based on Polynomial Expansion. In Proceedings of the Image Analysis: 13th Scandinavian Conference, SCIA 2003 Halmstad, Sweden, June 29–July 2, 2003 Proceedings 13; Springer: Berlin/Heidelberg, Germany, 2003; pp. 363–370. [Google Scholar]
- Shen, Y.; Du, X.; Liu, J. Monocular Vision Based Obstacle Detection for Robot Navigation in Unstructured Environment. In Proceedings of the Advances in Neural Networks–ISNN 2007: 4th International Symposium on Neural Networks, ISNN 2007, Nanjing, China, June 3-7, 2007, Proceedings, Part I 4; Springer: Berlin/Heidelberg, Germany, 2007; pp. 714–722. [Google Scholar]
- Bouchafa, S.; Zavidovique, B. Obstacle Detection” for Free” in the c-Velocity Space. In Proceedings of the 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC); IEEE: New York, NY, USA, 2011; pp. 308–313. [Google Scholar]
- Pȩszor, D.; Paszkuta, M.; Wojciechowska, M.; Wojciechowski, K. Optical Flow for Collision Avoidance in Autonomous Cars. In Proceedings of the Intelligent Information and Database Systems: 10th Asian Conference, ACIIDS 2018, Dong Hoi City, Vietnam, March 19-21, 2018, Proceedings, Part II 10; Springer: Berlin/Heidelberg, Germany, 2018; pp. 482–491. [Google Scholar]
- Herghelegiu, P.; Burlacu, A.; Caraiman, S. Negative Obstacle Detection for Wearable Assistive Devices for Visually Impaired. In Proceedings of the 2017 21st International Conference on System Theory, Control and Computing (ICSTCC); IEEE: New York, NY, USA, 2017; pp. 564–570. [Google Scholar]
- Kim, D.; Choi, J.; Yoo, H.; Yang, U.; Sohn, K. Rear Obstacle Detection System with Fisheye Stereo Camera Using HCT. Expert. Syst. Appl. 2015, 42, 6295–6305. [Google Scholar] [CrossRef]
- Gao, Y.; Ai, X.; Wang, Y.; Rarity, J.; Dahnoun, N. UV-Disparity Based Obstacle Detection with 3D Camera and Steerable Filter. In Proceedings of the 2011 IEEE Intelligent Vehicles Symposium (IV); IEEE: New York, NY, USA, 2011; pp. 957–962. [Google Scholar]
- Benenson, R.; Mathias, M.; Timofte, R.; van Gool, L. Fast Stixel Computation for Fast Pedestrian Detection. In Proceedings of the ECCV Workshops (3), Florence, Italy, 7–13 October 2012; Volume 7585, pp. 11–20. [Google Scholar]
- Kang, M.-S.; Lim, Y.-C. Fast Stereo-Based Pedestrian Detection Using Hypotheses. In Proceedings of the 2015 Conference on Research in Adaptive and Convergent Systems, Prague, Czech Republic, 9–12 October 2015; pp. 131–135. [Google Scholar]
- Mhiri, R.; Maiza, H.; Mousset, S.; Taouil, K.; Vasseur, P.; Bensrhair, A. Obstacle Detection Using Unsynchronized Multi-Camera Network. In Proceedings of the 2015 12th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI); IEEE: New York, NY, USA, 2015; pp. 7–12. [Google Scholar]
- Benacer, I.; Hamissi, A.; Khouas, A. A Novel Stereovision Algorithm for Obstacles Detection Based on UV-Disparity Approach. In Proceedings of the 2015 IEEE International Symposium on Circuits and Systems (ISCAS); IEEE: New York, NY, USA, 2015; pp. 369–372. [Google Scholar]
- Burlacu, A.; Bostaca, S.; Hector, I.; Herghelegiu, P.; Ivanica, G.; Moldoveanul, A.; Caraiman, S. Obstacle Detection in Stereo Sequences Using Multiple Representations of the Disparity Map. In Proceedings of the 2016 20th International Conference on System Theory, Control and Computing (ICSTCC); IEEE: NEW York, NY, USA, 2016; pp. 854–859. [Google Scholar]
- Sun, Y.; Zhang, L.; Leng, J.; Luo, T.; Wu, Y. An Obstacle Detection Method Based on Binocular Stereovision. In Proceedings of the Advances in Multimedia Information Processing–PCM 2017: 18th Pacific-Rim Conference on Multimedia, Harbin, China, September 28-29, 2017, Revised Selected Papers, Part II 18; Springer: Berlin/Heidelberg, Germany, 2018; pp. 571–580. [Google Scholar]
- Kubota, S.; Nakano, T.; Okamoto, Y. A Global Optimization Algorithm for Real-Time on-Board Stereo Obstacle Detection Systems. In Proceedings of the 2007 IEEE Intelligent Vehicles Symposium; IEEE: New York, NY, USA, 2007; pp. 7–12. [Google Scholar]
- Liu, L.; Cui, J.; Li, J. Obstacle Detection and Classification in Dynamical Background. AASRI Procedia 2012, 1, 435–440. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 779–788. [Google Scholar]
- Mukhopadhyay, A.; Mukherjee, I.; Biswas, P. Comparing CNNs for Non-Conventional Traffic Participants. In Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications: Adjunct Proceedings, Utrecht, The Netherlands, 21–25 September 2019; pp. 171–175. [Google Scholar]
- Masmoudi, M.; Ghazzai, H.; Frikha, M.; Massoud, Y. Object Detection Learning Techniques for Autonomous Vehicle Applications. In Proceedings of the 2019 IEEE International Conference on Vehicular Electronics and Safety (ICVES); IEEE: New York, NY, USA, 2019; pp. 1–5. [Google Scholar]
- Huang, P.-Y.; Lin, H.-Y. Rear Obstacle Warning for Reverse Driving Using Stereo Vision Techniques. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC); IEEE: New York, NY, USA, 2019; pp. 921–926. [Google Scholar]
- Dairi, A.; Harrou, F.; Senouci, M.; Sun, Y. Unsupervised Obstacle Detection in Driving Environments Using Deep-Learning-Based Stereovision. Rob. Auton. Syst. 2018, 100, 287–301. [Google Scholar] [CrossRef] [Green Version]
- Lian, J.; Kong, L.; Li, L.; Zheng, W.; Zhou, Y.; Fang, S.; Qian, B. Study on Obstacle Detection and Recognition Method Based on Stereo Vision and Convolutional Neural Network. In Proceedings of the 2019 Chinese Control Conference (CCC); IEEE: New York, NY, USA, 2019; pp. 8766–8771. [Google Scholar]
- Hsu, Y.-W.; Zhong, K.-Q.; Perng, J.-W.; Yin, T.-K.; Chen, C.-Y. Developing an On-Road Obstacle Detection System Using Monovision. In Proceedings of the 2018 International Conference on Image and Vision Computing New Zealand (IVCNZ); IEEE: New York, NY, USA, 2018; pp. 1–9. [Google Scholar]
- Hota, R.N.; Jonna, K.; Krishna, P.R. On-Road Vehicle Detection by Cascaded Classifiers. In Proceedings of the Third Annual ACM Bangalore Conference, Bangalore, India, 22–23 January 2010; pp. 1–5. [Google Scholar]
- Woo, J.-W.; Lim, Y.-C.; Lee, M. Dynamic Obstacle Identification Based on Global and Local Features for a Driver Assistance System. Neural Comput. Appl. 2011, 20, 925–933. [Google Scholar] [CrossRef]
- Chanawangsa, P.; Chen, C.W. A Novel Video Analysis Approach for Overtaking Vehicle Detection. In Proceedings of the 2013 International Conference on Connected Vehicles and Expo (ICCVE); IEEE: New York, NY, USA, 2013; pp. 802–807. [Google Scholar]
- Badrloo, S.; Varshosaz, M.; Pirasteh, S.; Li, J. Image-Based Obstacle Detection Methods for the Safe Navigation of Unmanned Vehicles: A Review. Remote Sens (Basel) 2022, 14, 3824. [Google Scholar] [CrossRef]
- Gavrila, D.M.; Munder, S. Multi-Cue Pedestrian Detection and Tracking from a Moving Vehicle. Int. J. Comput. Vis. 2007, 73, 41–59. [Google Scholar] [CrossRef] [Green Version]
- Franke, U.; Gehrig, S.; Badino, H.; Rabe, C. Towards Optimal Stereo Analysis of Image Sequences. Lect. Notes Comput. Sci. 2008, 4931, 43–58. [Google Scholar]
- Ma, G.; Park, S.-B.; Muller-Schneiders, S.; Ioffe, A.; Kummert, A. Vision-Based Pedestrian Detection-Reliable Pedestrian Candidate Detection by Combining Ipm and a 1d Profile. In Proceedings of the 2007 IEEE Intelligent Transportation Systems Conference; IEEE: New York, NY, USA, 2007; pp. 137–142. [Google Scholar]
- Cabani, I.; Toulminet, G.; Bensrhair, A. Contrast-Invariant Obstacle Detection System Using Color Stereo Vision. In Proceedings of the 2008 11th International IEEE Conference on Intelligent Transportation Systems; IEEE: New York, NY, USA, 2008; pp. 1032–1037. [Google Scholar]
- Suganuma, N.; Shimoyama, M.; Fujiwara, N. Obstacle Detection Using Virtual Disparity Image for Non-Flat Road. In Proceedings of the 2008 IEEE Intelligent Vehicles Symposium; IEEE: New York, NY, USA, 2008; pp. 596–601. [Google Scholar]
- Keller, C.G.; Llorca, D.F.; Gavrila, D.M. Dense Stereo-Based Roi Generation for Pedestrian Detection. In Proceedings of the Pattern Recognition: 31st DAGM Symposium, Jena, Germany, September 9-11, 2009. Proceedings 31; Springer: Berlin/Heidelberg, Germany, 2009; pp. 81–90. [Google Scholar]
- Chiu, C.-C.; Chen, W.-C.; Ku, M.-Y.; Liu, Y.-J. Asynchronous Stereo Vision System for Front-Vehicle Detection. In Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing; IEEE: New York, NY, USA, 2009; pp. 965–968. [Google Scholar]
- Ess, A.; Leibe, B.; Schindler, K.; van Gool, L. Moving Obstacle Detection in Highly Dynamic Scenes. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation; IEEE: New York, NY, USA, 2009; pp. 56–63. [Google Scholar]
- Ma, G.; Müller, D.; Park, S.-B.; Müller-Schneiders, S.; Kummert, A. Pedestrian Detection Using a Single-Monochrome Camera. IET Intell. Transp. Syst. 2009, 3, 42–56. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, J. Parallel Computation for Stereovision Obstacle Detection of Autonomous Vehicles Using GPU. In Proceedings of the Life System Modeling and Intelligent Computing: International Conference on Life System Modeling and Simulation, LSMS 2010, and International Conference on Intelligent Computing for Sustainable Energy and Environment, ICSEE 2010, Wuxi, China, 17 September 2010; Springer: Berlin/Heidelberg, Germany; pp. 176–184. [Google Scholar]
- Baig, M.W.; Pirzada, S.J.H.; Haq, E.; Shin, H. New Single Camera Vehicle Detection Based on Gabor Features for Real Time Operation. In Proceedings of the Convergence and Hybrid Information Technology: 5th International Conference, ICHIT 2011, Daejeon, Korea, September 22-24, 2011. Proceedings 5; Springer: Berlin/Heidelberg, Germany, 2011; pp. 567–574. [Google Scholar]
- Nieto, M.; Arróspide Laborda, J.; Salgado, L. Road Environment Modeling Using Robust Perspective Analysis and Recursive Bayesian Segmentation. Mach. Vis. Appl. 2011, 22, 927–945. [Google Scholar] [CrossRef] [Green Version]
- Na, I.; Han, S.H.; Jeong, H. Stereo-Based Road Obstacle Detection and Tracking. In Proceedings of the 13th International Conference on Advanced Communication Technology (ICACT2011), Gangwon-Do, Republic of Korea, 13–16 February 2011; IEEE: New York, NY, USA, 2011; pp. 1181–1184. [Google Scholar]
- Iwata, H.; Saneyoshi, K. Forward Obstacle Detection System by Stereo Vision. In Proceedings of the 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO); IEEE: New York, NY, USA, 2012; pp. 1842–1847. [Google Scholar]
- Boroujeni, N.S.; Etemad, S.A.; Whitehead, A. Fast Obstacle Detection Using Targeted Optical Flow. In Proceedings of the 2012 19th IEEE International Conference on Image Processing; IEEE: New York, NY, USA, 2012; pp. 65–68. [Google Scholar]
- Lefebvre, S.; Ambellouis, S. Vehicle Detection and Tracking Using Mean Shift Segmentation on Semi-Dense Disparity Maps. In Proceedings of the 2012 IEEE Intelligent Vehicles Symposium; IEEE: New York, NY, USA, 2012; pp. 855–860. [Google Scholar]
- Trif, A.; Oniga, F.; Nedevschi, S. Stereovision on Mobile Devices for Obstacle Detection in Low Speed Traffic Scenarios. In Proceedings of the 2013 IEEE 9th International Conference on Intelligent Computer Communication and Processing (ICCP); IEEE: New York, NY, USA, 2013; pp. 169–174. [Google Scholar]
- Khalid, Z.; Abdenbi, M. Stereo Vision-Based Road Obstacles Detection. In Proceedings of the 2013 8th International Conference on Intelligent Systems: Theories and Applications (SITA); IEEE: New York, NY, USA, 2013; pp. 1–6. [Google Scholar]
- Petrovai, A.; Costea, A.; Oniga, F.; Nedevschi, S. Obstacle Detection Using Stereovision for Android-Based Mobile Devices. In Proceedings of the 2014 IEEE 10th International Conference on Intelligent Computer Communication and Processing (ICCP); IEEE: New York, NY, USA, 2014; pp. 141–147. [Google Scholar]
- Iloie, A.; Giosan, I.; Nedevschi, S. UV Disparity Based Obstacle Detection and Pedestrian Classification in Urban Traffic Scenarios. In Proceedings of the 2014 IEEE 10th International Conference on Intelligent Computer Communication and Processing (ICCP); IEEE: New YORK, NY, USA, 2014; pp. 119–125. [Google Scholar]
- Poddar, A.; Ahmed, S.T.; Puhan, N.B. Adaptive Saliency-Weighted Obstacle Detection for the Visually Challenged. In Proceedings of the 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN); IEEE: New York, NY, USA, 2015; pp. 477–482. [Google Scholar]
- Jia, B.; Liu, R.; Zhu, M. Real-Time Obstacle Detection with Motion Features Using Monocular Vision. Vis. Comput. 2015, 31, 281–293. [Google Scholar] [CrossRef]
- Wu, M.; Zhou, C.; Srikanthan, T. Robust and Low Complexity Obstacle Detection and Tracking. In Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC); IEEE: New York, NY, USA, 2016; pp. 1249–1254. [Google Scholar]
- Carrillo, D.A.P.; Sutherland, A. Fast Obstacle Detection Using Sparse Edge-Based Disparity Maps. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV); IEEE: New York, NY, USA, 2016; pp. 66–72. [Google Scholar]
- Häne, C.; Heng, L.; Lee, G.H.; Fraundorfer, F.; Furgale, P.; Sattler, T.; Pollefeys, M. 3D Visual Perception for Self-Driving Cars Using a Multi-Camera System: Calibration, Mapping, Localization, and Obstacle Detection. Image Vis. Comput. 2017, 68, 14–27. [Google Scholar] [CrossRef] [Green Version]
- Prabhakar, G.; Kailath, B.; Natarajan, S.; Kumar, R. Obstacle Detection and Classification Using Deep Learning for Tracking in High-Speed Autonomous Driving. In Proceedings of the 2017 IEEE region 10 symposium (TENSYMP); IEEE: New York, NY, USA, 2017; pp. 1–6. [Google Scholar]
- Li, P.; Mi, Y.; He, C.; Li, Y. Detection and Discrimination of Obstacles to Vehicle Environment under Convolutional Neural Networks. In Proceedings of the 2018 Chinese Control And Decision Conference (CCDC); IEEE: New York, NY, USA, 2018; pp. 337–341. [Google Scholar]
- Fan, Y.; Zhou, L.; Fan, L.; Yang, J. Multiple Obstacle Detection for Assistance Driver System Using Deep Neural Networks. In Proceedings of the Artificial Intelligence and Security: 5th International Conference, ICAIS 2019, New York, NY, USA, July 26–28, 2019, Proceedings, Part III 5; Springer: Berlin/Heidelberg, Germany, 2019; pp. 501–513. [Google Scholar]
- Hsieh, Y.-Y.; Lin, W.-Y.; Li, D.-L.; Chuang, J.-H. Deep Learning-Based Obstacle Detection and Depth Estimation. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP); IEEE: New York, NY, USA, 2019; pp. 1635–1639. [Google Scholar]
- Ohgushi, T.; Horiguchi, K.; Yamanaka, M. Road Obstacle Detection Method Based on an Autoencoder with Semantic Segmentation. In Proceedings of the Asian Conference on Computer Vision, Kyoto, Japan, 30 November– 4 December 2020. [Google Scholar]
- He, D.; Zou, Z.; Chen, Y.; Liu, B.; Miao, J. Rail Transit Obstacle Detection Based on Improved CNN. IEEE Trans. Instrum. Meas. 2021, 70, 1–14. [Google Scholar] [CrossRef]
- Luo, G.; Chen, X.; Lin, W.; Dai, J.; Liang, P.; Zhang, C. An Obstacle Detection Algorithm Suitable for Complex Traffic Environment. World Electr. Veh. J. 2022, 13, 69. [Google Scholar] [CrossRef]
- Du, L.; Chen, X.; Pei, Z.; Zhang, D.; Liu, B.; Chen, W. Improved Real-Time Traffic Obstacle Detection and Classification Method Applied in Intelligent and Connected Vehicles in Mixed Traffic Environment. J Adv Transp 2022, 2022, 1–12. [Google Scholar] [CrossRef]
- Zaheer, M.Z.; Lee, J.H.; Lee, S.-I.; Seo, B.-S. A Brief Survey on Contemporary Methods for Anomaly Detection in Videos. In Proceedings of the 2019 International Conference on Information and Communication Technology Convergence (ICTC); IEEE: New York, NY, USA, 2019; pp. 472–473. [Google Scholar]
- UCSD Anomaly Detection Dataset. Available online: http://www.svcl.ucsd.edu/projects/anomaly/dataset.html (accessed on 12 January 2023).
- Monitoring Human Activity. Available online: http://mha.cs.umn.edu/Movies/Crowd-Activity-All.avi (accessed on 20 January 2023).
- Charlotte Vision Laboratory. Available online: https://webpages.charlotte.edu/cchen62/dataset.html (accessed on 20 January 2023).
- Chong, Y.S.; Tay, Y.H. Abnormal Event Detection in Videos Using Spatiotemporal Autoencoder. In Proceedings of the Advances in Neural Networks-ISNN 2017: 14th International Symposium, ISNN 2017, Sapporo, Hakodate, and Muroran, Hokkaido, Japan, June 21–26, 2017, Proceedings, Part II 14; Springer: Berlin/Heidelberg, Germany, 2017; pp. 189–196. [Google Scholar]
- Liu, W.; Luo, W.; Lian, D.; Gao, S. Future Frame Prediction for Anomaly Detection–a New Baseline. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6536–6545. [Google Scholar]
- Luo, W.; Liu, W.; Gao, S. A Revisit of Sparse Coding Based Anomaly Detection in Stacked Rnn Framework. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 341–349. [Google Scholar]
- Samuel, D.J.; Cuzzolin, F. Unsupervised Anomaly Detection for a Smart Autonomous Robotic Assistant Surgeon (SARAS) Using a Deep Residual Autoencoder. IEEE Robot Autom. Lett. 2021, 6, 7256–7261. [Google Scholar] [CrossRef]
- Sultani, W.; Chen, C.; Shah, M. Real-World Anomaly Detection in Surveillance Videos. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6479–6488. [Google Scholar]
- Sabokrou, M.; Fayyaz, M.; Fathy, M.; Klette, R. Deep-Cascade: Cascading 3d Deep Neural Networks for Fast Anomaly Detection and Localization in Crowded Scenes. IEEE Trans. Image Process. 2017, 26, 1992–2004. [Google Scholar] [CrossRef] [PubMed]
- Adam, A.; Rivlin, E.; Shimshoni, I.; Reinitz, D. Robust Real-Time Unusual Event Detection Using Multiple Fixed-Location Monitors. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, B.; Lin, S.; Wipf, D.; Guo, M.; Guo, B. Unsupervised Extraction of Video Highlights via Robust Recurrent Auto-Encoders. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 4633–4641. [Google Scholar]
- Tran, H.T.M.; Hogg, D. Anomaly Detection Using a Convolutional Winner-Take-All Autoencoder. In Proceedings of the British Machine Vision Conference 2017; British Machine Vision Association: Durham, UK, 2017. [Google Scholar]
- Lu, C.; Shi, J.; Jia, J. Abnormal Event Detection at 150 Fps in Matlab. In Proceedings of the IEEE international conference on computer vision, Sydney, Australia, 1–8 December 2013; pp. 2720–2727. [Google Scholar]
- Ravanbakhsh, M.; Sangineto, E.; Nabi, M.; Sebe, N. Training Adversarial Discriminators for Cross-Channel Abnormal Event Detection in Crowds. In Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision (WACV); IEEE: New York, NY, USA, 2019; pp. 1896–1904. [Google Scholar]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.-K.; Woo, W. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. Adv. Neural Inf. Process. Syst. 2015, 28, 802–810. [Google Scholar]
- Xu, D.; Ricci, E.; Yan, Y.; Song, J.; Sebe, N. Learning Deep Representations of Appearance and Motion for Anomalous Event Detection. arXiv 2015, arXiv:1510.01553. [Google Scholar]
- Fan, Y.; Wen, G.; Li, D.; Qiu, S.; Levine, M.D.; Xiao, F. Video Anomaly Detection and Localization via Gaussian Mixture Fully Convolutional Variational Autoencoder. Comput. Vis. Image Underst. 2020, 195, 102920. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Wang, X.; Xiong, N.; Shao, J. Learning Sparse Representation with Variational Auto-Encoder for Anomaly Detection. IEEE Access 2018, 6, 33353–33361. [Google Scholar] [CrossRef]
- Nayak, R.; Pati, U.C.; Das, S.K. A Comprehensive Review on Deep Learning-Based Methods for Video Anomaly Detection. Image Vis. Comput. 2021, 106, 104078. [Google Scholar] [CrossRef]
- Yan, S.; Smith, J.S.; Lu, W.; Zhang, B. Abnormal Event Detection from Videos Using a Two-Stream Recurrent Variational Autoencoder. IEEE Trans. Cogn. Dev. Syst. 2018, 12, 30–42. [Google Scholar] [CrossRef]
- Hasan, M.; Choi, J.; Neumann, J.; Roy-Chowdhury, A.K.; Davis, L.S. Learning Temporal Regularity in Video Sequences. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 733–742. [Google Scholar]
- Colque, R.V.H.M.; Caetano, C.; de Andrade, M.T.L.; Schwartz, W.R. Histograms of Optical Flow Orientation and Magnitude and Entropy to Detect Anomalous Events in Videos. IEEE Trans. Circuits Syst. Video Technol. 2016, 27, 673–682. [Google Scholar] [CrossRef]
- Zhao, Y.; Deng, B.; Shen, C.; Liu, Y.; Lu, H.; Hua, X.-S. Spatio-Temporal Autoencoder for Video Anomaly Detection. In Proceedings of the 25th ACM international Conference on Multimedia, Mountain View, CA, USA, 23–27 October 2017; pp. 1933–1941. [Google Scholar]
- Lee, S.; Kim, H.G.; Ro, Y.M. STAN: Spatio-Temporal Adversarial Networks for Abnormal Event Detection. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); IEEE: New York, NY, USA, 2018; pp. 1323–1327. [Google Scholar]
- Kiran, B.R.; Thomas, D.M.; Parakkal, R. An Overview of Deep Learning Based Methods for Unsupervised and Semi-Supervised Anomaly Detection in Videos. J. Imaging 2018, 4, 36. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.T.; Du, J.; Zhu, H.; Peng, X.; Liu, Y.; Goh, R.S.M. Anomalynet: An Anomaly Detection Network for Video Surveillance. IEEE Trans. Inf. Secur. 2019, 14, 2537–2550. [Google Scholar] [CrossRef]
- Vu, H.; Nguyen, T.D.; Le, T.; Luo, W.; Phung, D. Robust Anomaly Detection in Videos Using Multilevel Representations. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 5216–5223. [Google Scholar]
- Chen, D.; Wang, P.; Yue, L.; Zhang, Y.; Jia, T. Anomaly Detection in Surveillance Video Based on Bidirectional Prediction. Image Vis. Comput. 2020, 98, 103915. [Google Scholar] [CrossRef]
- Nawaratne, R.; Alahakoon, D.; de Silva, D.; Yu, X. Spatiotemporal Anomaly Detection Using Deep Learning for Real-Time Video Surveillance. IEEE Trans. Ind. Inf. 2019, 16, 393–402. [Google Scholar] [CrossRef]
- Sun, C.; Jia, Y.; Song, H.; Wu, Y. Adversarial 3d Convolutional Auto-Encoder for Abnormal Event Detection in Videos. IEEE Trans. Multimed. 2020, 23, 3292–3305. [Google Scholar] [CrossRef]
- Bansod, S.D.; Nandedkar, A. v Crowd Anomaly Detection and Localization Using Histogram of Magnitude and Momentum. Vis. Comput. 2020, 36, 609–620. [Google Scholar] [CrossRef]
- Wang, S.; Zeng, Y.; Liu, Q.; Zhu, C.; Zhu, E.; Yin, J. Detecting Abnormality without Knowing Normality: A Two-Stage Approach for Unsupervised Video Abnormal Event Detection. In Proceedings of the 26th ACM International Conference on Multimedia, Seoul, Republic of Korea, 26 October 2018; pp. 636–644. [Google Scholar]
- Li, N.; Chang, F.; Liu, C. Spatial-Temporal Cascade Autoencoder for Video Anomaly Detection in Crowded Scenes. IEEE Trans. Multimed. 2020, 23, 203–215. [Google Scholar] [CrossRef]
- Le, V.-T.; Kim, Y.-G. Attention-Based Residual Autoencoder for Video Anomaly Detection. Appl. Intell. 2023, 53, 3240–3254. [Google Scholar] [CrossRef]
- Munawar, H.S.; Hammad, A.W.A.; Haddad, A.; Soares, C.A.P.; Waller, S.T. Image-Based Crack Detection Methods: A Review. Infrastructures 2021, 6, 115. [Google Scholar] [CrossRef]
- Abdel-Qader, I.; Abudayyeh, O.; Kelly, M.E. Analysis of Edge-Detection Techniques for Crack Identification in Bridges. J. Comput. Civ. Eng. 2003, 17, 255–263. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, T.; Nakamura, S.; Saegusa, R.; Hashimoto, S. Image-based Crack Detection for Real Concrete Surfaces. IEEJ Trans. Electr. Electron. Eng. 2008, 3, 128–135. [Google Scholar] [CrossRef]
- Gehri, N.; Mata-Falcón, J.; Kaufmann, W. Automated Crack Detection and Measurement Based on Digital Image Correlation. Constr. Build Mater. 2020, 256, 119383. [Google Scholar] [CrossRef]
- Adhikari, R.S.; Moselhi, O.; Bagchi, A. Image-Based Retrieval of Concrete Crack Properties for Bridge Inspection. Autom. Constr. 2014, 39, 180–194. [Google Scholar] [CrossRef]
- Xu, B.; Huang, Y. Automatic Inspection of Pavement Cracking Distress; Tescher, A.G., Ed.; SPIE: Bellingham, WA, USA, 18 August 2005; p. 590901. [Google Scholar] [CrossRef]
- Tsai, Y.-C.; Kaul, V.; Mersereau, R.M. Critical Assessment of Pavement Distress Segmentation Methods. J. Transp. Eng. 2010, 136, 11–19. [Google Scholar] [CrossRef]
- Zou, Q.; Cao, Y.; Li, Q.; Mao, Q.; Wang, S. CrackTree: Automatic Crack Detection from Pavement Images. Pattern Recognit. Lett. 2012, 33, 227–238. [Google Scholar] [CrossRef]
- Cubero-Fernandez, A.; Rodriguez-Lozano, F.J.; Villatoro, R.; Olivares, J.; Palomares, J.M. Efficient Pavement Crack Detection and Classification. EURASIP J. Image Video Process. 2017, 2017, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Prasanna, P.; Dana, K.; Gucunski, N.; Basily, B. Computer-Vision Based Crack Detection and Analysis. In Proceedings of the Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2012; SPIE: Bellingham, WA, USA, 2012; Volume 8345, pp. 1143–1148. [Google Scholar]
- Li, L.; Sun, L.; Ning, G.; Tan, S. Automatic Pavement Crack Recognition Based on BP Neural Network. PROMET-TrafficTransp. 2014, 26, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Qader, I.; Pashaie-Rad, S.; Abudayyeh, O.; Yehia, S. PCA-Based Algorithm for Unsupervised Bridge Crack Detection. Adv. Eng. Softw. 2006, 37, 771–778. [Google Scholar] [CrossRef]
- Salman, M.; Mathavan, S.; Kamal, K.; Rahman, M. Pavement Crack Detection Using the Gabor Filter. In Proceedings of the 16th international IEEE conference on intelligent transportation systems (ITSC 2013); IEEE: New York, NY, USA, 2013; pp. 2039–2044. [Google Scholar]
- Talab, A.M.A.; Huang, Z.; Xi, F.; HaiMing, L. Detection Crack in Image Using Otsu Method and Multiple Filtering in Image Processing Techniques. Optik 2016, 127, 1030–1033. [Google Scholar] [CrossRef]
- Oliveira, H.; Correia, P.L. CrackIT—An Image Processing Toolbox for Crack Detection and Characterization. In Proceedings of the 2014 IEEE international conference on image processing (ICIP); IEEE: New York, NY, USA, 2014; pp. 798–802. [Google Scholar]
- Varadharajan, S.; Jose, S.; Sharma, K.; Wander, L.; Mertz, C. Vision for Road Inspection. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision; IEEE: New York, NY, USA, March 2014; pp. 115–122. [Google Scholar]
- Oliveira, H.; Correia, P.L. Automatic Road Crack Detection and Characterization. IEEE Trans. Intell. Transp. Syst. 2013, 14, 155–168. [Google Scholar] [CrossRef]
- Delagnes, P.; Barba, D. A Markov Random Field for Rectilinear Structure Extraction in Pavement Distress Image Analysis. In Proceedings of the Proceedings., International Conference on Image Processing; IEEE Computer Society Press: Washington, DC, USA, 1995; pp. 446–449. [Google Scholar]
- Ahmadi, A.; Khalesi, S.; Bagheri, M. Automatic Road Crack Detection and Classification Using Image Processing Techniques, Machine Learning and Integrated Models in Urban Areas: A Novel Image Binarization Technique. J. Ind. Syst. Eng. 2018, 11, 85–97. [Google Scholar]
- Shi, Y.; Cui, L.; Qi, Z.; Meng, F.; Chen, Z. Automatic Road Crack Detection Using Random Structured Forests. IEEE Trans. Intell. Transp. Syst. 2016, 17, 3434–3445. [Google Scholar] [CrossRef]
- Cord, A.; Chambon, S. Automatic Road Defect Detection by Textural Pattern Recognition Based on AdaBoost. Comput.-Aided Civ. Infrastruct. Eng. 2012, 27, 244–259. [Google Scholar] [CrossRef]
- Wang, X.; Hu, Z. Grid-Based Pavement Crack Analysis Using Deep Learning. In Proceedings of the 2017 4th International Conference on Transportation Information and Safety (ICTIS); IEEE: New York, NY, USA, August 2017; pp. 917–924. [Google Scholar]
- Cha, Y.-J.; Choi, W. Vision-Based Concrete Crack Detection Using a Convolutional Neural Network. In Dynamics of Civil Structures, Volume 2: Proceedings of the 35th IMAC, A Conference and Exposition on Structural Dynamics 2017; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 71–73. [Google Scholar]
- Yang, L.; Li, B.; Li, W.; Liu, Z.; Yang, G.; Xiao, J. A Robotic System towards Concrete Structure Spalling and Crack Database. In Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO); IEEE: New York, NY, USA, 2017; pp. 1276–1281. [Google Scholar]
- Dorafshan, S.; Thomas, R.J.; Maguire, M. Comparison of Deep Convolutional Neural Networks and Edge Detectors for Image-Based Crack Detection in Concrete. Constr. Build Mater. 2018, 186, 1031–1045. [Google Scholar] [CrossRef]
- Zou, Q.; Zhang, Z.; Li, Q.; Qi, X.; Wang, Q.; Wang, S. Deepcrack: Learning Hierarchical Convolutional Features for Crack Detection. IEEE Trans. Image Process. 2018, 28, 1498–1512. [Google Scholar] [CrossRef] [PubMed]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); IEEE: New York, NY, USA, 2017; pp. 6517–6525. [Google Scholar]
- Gibb, S.; La, H.M.; Louis, S. A Genetic Algorithm for Convolutional Network Structure Optimization for Concrete Crack Detection. In Proceedings of the 2018 IEEE congress on evolutionary computation (CEC); IEEE: New York, NY, USA, 2018; pp. 1–8. [Google Scholar]
- Dung, C.V.; Anh, L.D. Autonomous Concrete Crack Detection Using Deep Fully Convolutional Neural Network. Autom. Constr. 2019, 99, 52–58. [Google Scholar] [CrossRef]
- Ren, Y.; Huang, J.; Hong, Z.; Lu, W.; Yin, J.; Zou, L.; Shen, X. Image-Based Concrete Crack Detection in Tunnels Using Deep Fully Convolutional Networks. Constr. Build Mater. 2020, 234, 117367. [Google Scholar] [CrossRef]
- David Jenkins, M.; Carr, T.A.; Iglesias, M.I.; Buggy, T.; Morison, G. A Deep Convolutional Neural Network for Semantic Pixel-Wise Segmentation of Road and Pavement Surface Cracks. In Proceedings of the 2018 26th European Signal Processing Conference (EUSIPCO); IEEE: New York, NY, USA, 2018; pp. 2120–2124. [Google Scholar]
- Ji, J.; Wu, L.; Chen, Z.; Yu, J.; Lin, P.; Cheng, S. Automated Pixel-Level Surface Crack Detection Using U-Net. In Multi-disciplinary Trends in Artificial Intelligence: 12th International Conference, MIWAI 2018, Hanoi, Vietnam, November 18–20, 2018, Proceedings 12 (pp. 69-78); Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 69–78. [Google Scholar]
- Fei, Y.; Wang, K.C.P.; Zhang, A.; Chen, C.; Li, J.Q.; Liu, Y.; Yang, G.; Li, B. Pixel-Level Cracking Detection on 3D Asphalt Pavement Images Through Deep-Learning- Based CrackNet-V. IEEE Trans. Intell. Transp. Syst. 2020, 21, 273–284. [Google Scholar] [CrossRef]
- Zhang, X.; Rajan, D.; Story, B. Concrete Crack Detection Using Context-aware Deep Semantic Segmentation Network. Comput.-Aided Civ. Infrastruct. Eng. 2019, 34, 951–971. [Google Scholar] [CrossRef]
- Liu, W.; Huang, Y.; Li, Y.; Chen, Q. FPCNet: Fast Pavement Crack Detection Network Based on Encoder-Decoder Architecture. arXiv 2019, arXiv:1907.02248. [Google Scholar]
- Li, S.; Zhao, X. Automatic Crack Detection and Measurement of Concrete Structure Using Convolutional Encoder-Decoder Network. IEEE Access 2020, 8, 134602–134618. [Google Scholar] [CrossRef]
- Li, G.; Ren, X.; Qiao, W.; Ma, B.; Li, Y. Automatic Bridge Crack Identification from Concrete Surface Using ResNeXt with Postprocessing. Struct. Control Health Monit. 2020, 27, e2620. [Google Scholar] [CrossRef]
- Zhang, K.; Cheng, H.-D.; Gai, S. Efficient Dense-Dilation Network for Pavement Cracks Detection with Large Input Image Size. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC); IEEE: New York, NY, USA, 2018; pp. 884–889. [Google Scholar]
- Yamane, T.; Chun, P. Crack Detection from a Concrete Surface Image Based on Semantic Segmentation Using Deep Learning. J. Adv. Concr. Technol. 2020, 18, 493–504. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, B.; Wang, J.; Li, J.; Sun, X. APLCNet: Automatic Pixel-Level Crack Detection Network Based on Instance Segmentation. IEEE Access 2020, 8, 199159–199170. [Google Scholar] [CrossRef]
- Choi, W.; Cha, Y.-J. SDDNet: Real-Time Crack Segmentation. IEEE Trans. Ind. Electron. 2020, 67, 8016–8025. [Google Scholar] [CrossRef]
- Chen, F.-C.; Jahanshahi, M.R. ARF-Crack: Rotation Invariant Deep Fully Convolutional Network for Pixel-Level Crack Detection. Mach. Vis. Appl. 2020, 31, 47. [Google Scholar] [CrossRef]
- Ma, N.; Fan, J.; Wang, W.; Wu, J.; Jiang, Y.; Xie, L.; Fan, R. Computer Vision for Road Imaging and Pothole Detection: A State-of-the-Art Review of Systems and Algorithms. Transp. Saf. Environ. 2022, 4, tdac026. [Google Scholar] [CrossRef]
- Mohan, A.; Poobal, S. Crack Detection Using Image Processing: A Critical Review and Analysis. Alex. Eng. J. 2018, 57, 787–798. [Google Scholar] [CrossRef]
- Shan, Q.; Dewhurst, R.J. Surface-breaking Fatigue Crack Detection Using Laser Ultrasound. Appl. Phys. Lett. 1993, 62, 2649–2651. [Google Scholar] [CrossRef]
- Ying, L.; Salari, E. Beamlet Transform-based Technique for Pavement Crack Detection and Classification. Comput.-Aided Civ. Infrastruct. Eng. 2010, 25, 572–580. [Google Scholar] [CrossRef]
- Landstrom, A.; Thurley, M.J. Morphology-Based Crack Detection for Steel Slabs. IEEE J. Sel. Top Signal Process 2012, 6, 866–875. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Cheng, H.D.; Zhang, B. Unified Approach to Pavement Crack and Sealed Crack Detection Using Preclassification Based on Transfer Learning. J. Comput. Civ. Eng. 2018, 32, 04018001. [Google Scholar] [CrossRef]
- Yang, X.; Li, H.; Yu, Y.; Luo, X.; Huang, T.; Yang, X. Automatic Pixel-Level Crack Detection and Measurement Using Fully Convolutional Network. Comput.-Aided Civ. Infrastruct. Eng. 2018, 33, 1090–1109. [Google Scholar] [CrossRef]
- Kim, H.; Ahn, E.; Shin, M.; Sim, S.-H. Crack and Noncrack Classification from Concrete Surface Images Using Machine Learning. Struct. Health Monit. 2019, 18, 725–738. [Google Scholar] [CrossRef]
- Bang, S.; Park, S.; Kim, H.; Kim, H. Encoder–Decoder Network for Pixel-level Road Crack Detection in Black-box Images. Comput.-Aided Civ. Infrastruct. Eng. 2019, 34, 713–727. [Google Scholar] [CrossRef]
- Hoang, N.-D.; Nguyen, Q.-L.; Tran, X.-L. Automatic Detection of Concrete Spalling Using Piecewise Linear Stochastic Gradient Descent Logistic Regression and Image Texture Analysis. Complexity 2019, 2019, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Ibragimov, E.; Lee, H.-J.; Lee, J.-J.; Kim, N. Automated Pavement Distress Detection Using Region Based Convolutional Neural Networks. Int. J. Pavement Eng. 2022, 23, 1981–1992. [Google Scholar] [CrossRef]
- Huyan, J.; Li, W.; Tighe, S.; Xu, Z.; Zhai, J. CrackU-net: A Novel Deep Convolutional Neural Network for Pixelwise Pavement Crack Detection. Struct Control Health Monit 2020, 27, e2551. [Google Scholar] [CrossRef]
- Feng, C.; Zhang, H.; Wang, H.; Wang, S.; Li, Y. Automatic Pixel-Level Crack Detection on Dam Surface Using Deep Convolutional Network. Sensors 2020, 20, 2069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Z.; Wang, J.; Cui, B.; Wang, D.; Wang, X. Patch-Based Weakly Supervised Semantic Segmentation Network for Crack Detection. Constr. Build. Mater. 2020, 258, 120291. [Google Scholar] [CrossRef]
- Zhou, Q.; Qu, Z.; Cao, C. Mixed Pooling and Richer Attention Feature Fusion for Crack Detection. Pattern Recognit Lett 2021, 145, 96–102. [Google Scholar] [CrossRef]
- Sun, X.; Xie, Y.; Jiang, L.; Cao, Y.; Liu, B. Dma-Net: Deeplab with Multi-Scale Attention for Pavement Crack Segmentation. IEEE Trans. Intell. Transp. Syst. 2022, 23, 18392–18403. [Google Scholar] [CrossRef]
- Siddiqui, F.; Khan, R.; Sezer, S. Bird’s-Eye View on the Automotive Cybersecurity Landscape & Challenges in Adopting AI/ML. In Proceedings of the 2021 Sixth International Conference on Fog and Mobile Edge Computing (FMEC); IEEE: New York, NY, USA, 2021; pp. 1–6. [Google Scholar]
- Galvao, L.G.; Abbod, M.; Kalganova, T.; Palade, V.; Huda, M.N. Pedestrian and Vehicle Detection in Autonomous Vehicle Perception Systems—A Review. Sensors 2021, 21, 7267. [Google Scholar] [CrossRef]
- Kim, J.; Park, C. End-To-End Ego Lane Estimation Based on Sequential Transfer Learning for Self-Driving Cars. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW); IEEE: New York, NY, USA, July 2017; pp. 1194–1202. [Google Scholar]
- Maqueda, A.I.; Loquercio, A.; Gallego, G.; García, N.; Scaramuzza, D. Event-Based Vision Meets Deep Learning on Steering Prediction for Self-Driving Cars. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 5419–5427. [Google Scholar]
- Mahaur, B.; Singh, N.; Mishra, K.K. Road Object Detection: A Comparative Study of Deep Learning-Based Algorithms. Multimed. Tools Appl. 2022, 81, 14247–14282. [Google Scholar] [CrossRef]
- Parrotta, G.; Tropea, M.; de Rango, F. A Computer Vision Approach to Predict Distance in an Autonomous Vehicle Environment. In Proceedings of the SIMULTECH 2022, Lisbon, Portugal, 6 October 2022; pp. 348–355. [Google Scholar]
- Na, Y.-K.; Oh, S.-Y. Hybrid Control for Autonomous Mobile Robot Navigation Using Neural Network Based Behavior Modules and Environment Classification. Auton Robot. 2003, 15, 193–206. [Google Scholar] [CrossRef]
- Ozcelik, Z.; Tastimur, C.; Karakose, M.; Akin, E. A Vision Based Traffic Light Detection and Recognition Approach for Intelligent Vehicles. In Proceedings of the 2017 International Conference on Computer Science and Engineering (UBMK); IEEE: New York, NY, USA, 2017; pp. 424–429. [Google Scholar]
- Khan, S.; Teng, Y.; Cui, J. Pedestrian Traffic Lights Classification Using Transfer Learning in Smart City Application. In Proceedings of the 2021 13th International Conference on Communication Software and Networks (ICCSN); IEEE: New York, NY, USA, 2021; pp. 352–356. [Google Scholar]
- Fang, R.; Cai, C. Computer Vision Based Obstacle Detection and Target Tracking for Autonomous Vehicles. In Proceedings of the MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2021; Volume 336, p. 07004. [Google Scholar]
- Wang, Q.; Zhang, Q.; Liang, X.; Wang, Y.; Zhou, C.; Mikulovich, V.I. Traffic Lights Detection and Recognition Method Based on the Improved YOLOv4 Algorithm. Sensors 2022, 22, 200. [Google Scholar] [CrossRef]
- Gao, H.; Fang, D.; Xiao, J.; Hussain, W.; Kim, J.Y. CAMRL: A Joint Method of Channel Attention and Multidimensional Regression Loss for 3D Object Detection in Automated Vehicles. IEEE Trans. Intell. Transp. Syst. 2022. [Google Scholar] [CrossRef]
- Cervera-Uribe, A.A.; Mendez-Monroy, P.E. U19-Net: A Deep Learning Approach for Obstacle Detection in Self-Driving Cars. Soft Comput. 2022, 26, 5195–5207. [Google Scholar] [CrossRef]
- Song, T.-J.; Jeong, J.; Kim, J.-H. End-to-End Real-Time Obstacle Detection Network for Safe Self-Driving via Multi-Task Learning. IEEE Trans. Intell. Transp. Syst. 2022, 23, 16318–16329. [Google Scholar] [CrossRef]
- Xue, Y.; Li, Y. A Fast Detection Method via Region-based Fully Convolutional Neural Networks for Shield Tunnel Lining Defects. Comput.-Aided Civ. Infrastruct. Eng. 2018, 33, 638–654. [Google Scholar] [CrossRef]
- Makantasis, K.; Protopapadakis, E.; Doulamis, A.; Doulamis, N.; Loupos, C. Deep Convolutional Neural Networks for Efficient Vision Based Tunnel Inspection. In Proceedings of the 2015 IEEE international conference on intelligent computer communication and processing (ICCP); IEEE: New York, NY, USA, 2015; pp. 335–342. [Google Scholar]
- Ramos, S.; Gehrig, S.; Pinggera, P.; Franke, U.; Rother, C. Detecting Unexpected Obstacles for Self-Driving Cars: Fusing Deep Learning and Geometric Modeling. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV); IEEE: New York, NY, USA, 2017; pp. 1025–1032. [Google Scholar]
- Sun, F.; Dubey, A.; White, J. DxNAT—Deep Neural Networks for Explaining Non-Recurring Traffic Congestion. In Proceedings of the 2017 IEEE International Conference on Big Data (Big Data); IEEE: New York, NY, USA, 2017; pp. 2141–2150. [Google Scholar]
- Acharya, D.; Yan, W.; Khoshelham, K. Real-Time Image-Based Parking Occupancy Detection Using Deep Learning. Res. Locate 2018, 4, 33–40. [Google Scholar]
- Pan, G.; Muresan, M.; Yu, R.; Fu, L. Real-Time Winter Road Surface Condition Monitoring Using an Improved Residual CNN. Can. J. Civ. Eng. 2021, 48, 1215–1222. [Google Scholar] [CrossRef]
- Daxue Consulting AI in China’s Transportation Industry: Shaping the Future of Transportation 2019. Available online: https://daxueconsulting.com/ai-china-transportation-industry (accessed on 9 February 2023).
- Kotseruba, I.; Tsotsos, J.K. Attention for Vision-Based Assistive and Automated Driving: A Review of Algorithms and Datasets. IEEE Trans. Intell. Transp. Syst. 2022, 23, 19907–19928. [Google Scholar] [CrossRef]
- Garg, H. Drowsiness Detection of a Driver Using Conventional Computer Vision Application. In Proceedings of the 2020 International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC); IEEE: NEW YORK, NY, USA, February 2020; pp. 50–53. [Google Scholar]
- Guerrieri, M.; Parla, G. Smart Tramway Systems for Smart Cities: A Deep Learning Application in ADAS Systems. Int. J. Intell. Transp. Syst. Res. 2022, 20, 745–758. [Google Scholar] [CrossRef]
- Sathyanarayana, N. A Survey on Vehicle Detection and Classification for Electronic Toll Collection Applications. In Distributed Computing and Optimization Techniques: Select Proceedings of ICDCOT 2021; Springer: Berlin/Heidelberg, Germany, 2022; pp. 101–110. [Google Scholar]
- Ardestani, S.M.; Jin, P.J.; Feeley, C. Signal Timing Detection Based on Spatial–Temporal Map Generated from CCTV Surveillance Video. Transp Res. Rec. 2016, 2594, 138–147. [Google Scholar] [CrossRef]
- Zaatouri, K.; Ezzedine, T. A Self-Adaptive Traffic Light Control System Based on YOLO. In Proceedings of the 2018 International Conference on Internet of Things, Embedded Systems and Communications (IINTEC); IEEE: New York, NY, USA, 2018; pp. 16–19. [Google Scholar]
- Qi, B.; Zhao, W.; Zhang, H.; Jin, Z.; Wang, X.; Runge, T. Automated Traffic Volume Analytics at Road Intersections Using Computer Vision Techniques. In Proceedings of the 2019 5th International Conference on Transportation Information and Safety (ICTIS); IEEE: New York, NY, USA, 2019; pp. 161–169. [Google Scholar]
- van Wyk, F.; Wang, Y.; Khojandi, A.; Masoud, N. Real-Time Sensor Anomaly Detection and Identification in Automated Vehicles. IEEE Trans. Intell. Transp. Syst. 2019, 21, 1264–1276. [Google Scholar] [CrossRef]
- Shepelev, V.D.; Vorobyev, A.I.; Shepeleva, E.; Alferova, I.D.; Golenyaev, N.; Yakupova, G.; Mavrin, V.G. The Estimation of Traffic Flow Parameters Based on Monitoring the Speed Values Using Computer Vision. In Proceedings of the VEHITS, Online Streaming, 28–30 April 2021; pp. 752–759. [Google Scholar]
- Umair, M.; Farooq, M.U.; Raza, R.H.; Chen, Q.; Abdulhai, B. Efficient Video-Based Vehicle Queue Length Estimation Using Computer Vision and Deep Learning for an Urban Traffic Scenario. Processes 2021, 9, 1786. [Google Scholar] [CrossRef]
- Gao, J.; Zuo, F.; Ozbay, K.; Hammami, O.; Barlas, M.L. A New Curb Lane Monitoring and Illegal Parking Impact Estimation Approach Based on Queueing Theory and Computer Vision for Cameras with Low Resolution and Low Frame Rate. Transp. Res. Part A Policy Pr. 2022, 162, 137–154. [Google Scholar] [CrossRef]
- Ahmed, M.; Masood, S.; Ahmad, M.; Abd El-Latif, A.A. Intelligent Driver Drowsiness Detection for Traffic Safety Based on Multi CNN Deep Model and Facial Subsampling. IEEE Trans. Intell. Transp. Syst. 2021, 23, 19743–19752. [Google Scholar] [CrossRef]
- Rahman, A.; Hriday, M.B.H.; Khan, R. Computer Vision-Based Approach to Detect Fatigue Driving and Face Mask for Edge Computing Device. Heliyon 2022, 8, e11204. [Google Scholar] [CrossRef] [PubMed]
- Batura, O.; Regeczi, D.; Vassilev, A.; Yagafarova, A.; Bani, E.; Bonneau, V.; Jacques, F.; de Streel, A. Artificial Intelligence in Road Transport: Annex to Cost of Non-Europe Report. 2021. Available online: https://www.europarl.europa.eu/RegData/etudes/STUD/2021/654212/EPRS_STU(2021)654212(ANN1)_EN.pdf (accessed on 12 January 2023).
- Clements, L.M.; Kockelman, K.M. Economic Effects of Automated Vehicles. Transp. Res. Rec. 2017, 2606, 106–114. [Google Scholar] [CrossRef]
- Chase, N.; Maples, J.; Schipper, M. Autonomous Vehicles: Uncertainties and Energy Implications. In Proceedings of the 2018 EIA Energy Conference, Washington, DC, USA, 5 June 2018. [Google Scholar]
- FleetOwner TuSimple Plans Freight Deliveries without Drivers in 2021. Available online: https://www.fleetowner.com/technology/autonomous-vehicles/article/21704357/tusimple-plans-freight-deliveries-without-drivers-in-2021 (accessed on 9 February 2023).
- Aisha, C.; Hastings, G.; Murnane, J.; Neuhaus, F. Distraction or Disruption? Autonomous Trucks Gain Ground in US Logistics. Available online: https://www.mckinsey.com/industries/travel-logistics-and-infrastructure/our-insights/distraction-or-disruption-autonomous-trucks-gain-ground-in-us-logistics (accessed on 2 March 2023).
- Singh, S. Critical Reasons for Crashes Investigated in the National Motor Vehicle Crash Causation Survey. Traffic Safety Facts Crash Stats. Report No. DOT HS 812 115; National Center for Statistics and Analysis: Washington, DC, USA, 2015. [Google Scholar]
- Wang, Z.; She, Q.; Ward, T.E. Generative Adversarial Networks in Computer Vision: A Survey and Taxonomy. ACM Comput. Surv. 2021, 54, 1–38. [Google Scholar] [CrossRef]
- Li, Z.; Jin, D.; Hannon, C.; Shahidehpour, M.; Wang, J. Assessing and Mitigating Cybersecurity Risks of Traffic Light Systems in Smart Cities. IET Cyber-Phys. Syst. Theory Appl. 2016, 1, 60–69. [Google Scholar] [CrossRef] [Green Version]
Computer Vision Function | Application Areas | Sample Datasets | Performance Metrics |
---|---|---|---|
Object Detection | Problem: Boxing the objects in the image/video and finding their coordinates in the image
| COCO CityScape ImageNet LISA GTSDB (German Traffic Light Detection) Pascal VOC CIFAR-10/CIFAR-100 | mAP (mean average precision) Accuracy Precision Recall AP (average precision) RMSE (root mean squared error) |
Object Segmentation | Problem: Classifying the pixels of the objects in the image and thus obtaining the individual masks of the object
| COCO CityScape BD100K KITTI LISA | mAP |
Image Enhancement | Problem: Restoring images that have been corrupted by low lighting, haze, rain, and fog
| REDS | PSNR (peak signal-to-noise ratio) |
Object Tracking | Problem: Tracking objects in video
| MOT19 | MOTA (multiple object tracking accuracy) |
Event Identification/Prediction | Problem: Making sense of what happened in the video
| UCF101 Kinetics600 | Accuracy mAP |
Anomaly Detection | Problem: Detection of abnormal behavior in transportation systems
| UCSD Ped1 UCSD Ped 2 Avenue UMN UCF Real World Street Scene CIFAR-10/CIFAR-100 ShanghaiTech | AUC (area under curve) Accuracy mAP |
Density Analysis | Problem: Determining the density of pedestrians, passengers, or vehicles
| Oxford 5K UCSD Mall UCF_CC_50 ShanghaiTech WorldExpo’10 | MAE (mean absolute error) MSE (mean squared error) |
Image/Event Search | Problem: Extraction of certain vehicles, pedestrians, or license plates from existing visual archives
| Oxford 5K Pascal VOC | Accuracy |
Ref. 1 | Year | Author(s) | Method | Dataset | Recognition Rate |
---|---|---|---|---|---|
[129] | 2015 | Ahmad et al. | OCR1: Template matching OCR2: PNN | 141 images | OCR1 for E1: 81.99% E2: 78.65% E3: 81.50% OCR2 for E1: 82.42% E2: 78.36% E3: 77.95% |
[125] | 2016 | Hommos et al. | OCR algorithms | 958 images | 99.50% |
[130] | 2017 | Omran and Jarallah | Back- propagation neural network (BPNN) | 60 images | 93.2% |
[126] | 2017 | Farhat et al. | OCR using field- programmable gate array (FPGA) processing unit | 454+ images, 2790 characters | 99.50% |
[128] | 2017 | Sasi et al. | ANN | Blurred, night, and daylight license plate images | N/A 2 |
[40] | 2018 | Laroca et al. | Data augmentation, distant CNNs for letters and digits | SSIG dataset: 2000 frames; UFPR-ALPR: 4500 frames | SSIG: 97.83% UFPR-ALPR: 90.37% |
[127] | 2018 | Molina-Moreno et al. | Scale-adaptive model, empirically constrained deformation model | 2600+ images, multiple datasets (OS, Stills&Caltech, AOLP) | 98.98% |
[135] | 2018 | Desai and Bartakke | Tesseract’s OCR | 1300 images | 92.12% |
[138] | 2019 | Singh et al. | Region of interest (ROI)- based filtering, vertical edge detection with removal of long edges | 1000+ videos | 92.31% |
[139] | 2019 | Sferle and Moisi | OCR; template matching | 110 images | N/A |
[140] | 2019 | Slimani et al. | Template matching | Set 1: 533 Set 2: 651 Set 3: 757 Set 4: 611 (video sequences) | Set 1: 98.1% Set 2: 96.37% Set 3: 93.07% Set 4: 92.52% |
[41] | 2019 | Hashmi et al. | RT-ALPR (CNN) | 4800 car images | 85% |
[21] | 2020 | Pustokhina et al. | Optimal k-means with CNN (OKM-CNN) | FZU Cars, Stanford Cars, and HumAIn 2019 Challenge Dataset | mAP values: FZU Cars: 96.3% Stanford Cars: 94.8% HumAIn 2019 Challenge Dataset: 96.1% Overall acc: 98.1% |
[132] | 2020 | Silva and Jung | YOLO-based CNN | SSIG, UFPR, OpenALPR | SSIG: 89.15% UFPR: 65.62% OpenALPR: 85.19% |
[85] | 2020 | Gong et al. | Convolutional RNN (CRNN), Deep CNN (DCNN), RNN, spatial transformer networks (STN), and connectionist temporal classification (CTC) models | Chinese City Parking Dataset (CCPD) | 93.56% |
[133] | 2020 | Akhtar and Ali | Random Forest classifier | 350 images of Croatian vehicles | 90.9% |
[100] | 2020 | Darapaneni et al. | YOLOv3, HAAR Cascade, and OpenCV | 300+ images; tested on 20+ car images | YOLOv3: 100% HAAR Cascade: 57.8% Open CV: 35.7% |
[134] | 2020 | Calitz and Hill | The design science research methodology | 34 vehicles for each angle | 96% |
[101] | 2022 | Vetriselvi et al. | DL-VLPNR (Tesseract OCR, Faster R-CNN + Inception V2) | FZU Cars and HumAIn 2019 | 98.6% |
Ref. | Year | Authors | Method | Dataset | Accuracy |
---|---|---|---|---|---|
[146] | 2011 | Rajesh et al. | Simple neural network | GTSRB | 94.73% |
[147] | 2011 | Boi and Gagliardini | SVM | GTSRB | 96.89% |
[142] | 2012 | Zaklouta et al. | k-d trees and random forests | GTSRB | 97.2% |
Ref. | Year | Authors | Method | Detection | Recognition | Dataset | Accuracy |
---|---|---|---|---|---|---|---|
[42] | 2011 | Ciresan et al. | CNN | ✖ | ✔ | GTSRB | 99.15% |
[43] | 2011 | Sermanet and LeCun | CNN | ✖ | ✔ | GTSRB | 99.17% |
[44] | 2012 | Ciresan et al. | CNN | ✖ | ✔ | GTSRB | 99.46% |
[45] | 2014 | Jin et al. | CNN | ✖ | ✔ | GTSRB | 99.65% |
[46] | 2015 | Haloi | CNN | ✖ | ✔ | GTSRB | 99.81% |
[47] | 2015 | Qian et al. | CNN | ✔ | ✔ | GTSRB + MNIST + CASIA | 99.83% |
[48] | 2016 | Changzhen et al. | CNN | ✔ | ✔ | Chinese traffic sign dataset | 99% |
[18] | 2016 | Li and Yang | RBM-CAA, SVM | ✖ | ✔ | GTSRB | 96.68% |
[25] | 2016 | Li et al. | RBM-CAA, R-CNN, cuda-convnet | ✔ | ✔ | LISA-TS (US traffic signs) | 96.68% |
[49] | 2016 | Jung et al. | CNN | ✔ | ✔ | Korean traffic signs | N/A |
[50] | 2017 | Zeng et al. | CNN | ✖ | ✔ | GTSRB | 99.54% |
[51] | 2017 | Zhang et al. | CNN | ✖ | ✔ | GTSRB | 99.84% |
[103] | 2022 | Xing et al. | Faster R-CNN + improved YOLOv5 | ✔ | ✔ | GTSDB, FRIDA database | 95.30% (mAP for Faster R-CNN net), 95.63% (accuracy for improved YOLOv5) |
[154] | 2022 | Marques et al. | YOLOv3 and YOLOv3_tiny | ✔ | ✔ | RoboCup Portuguese Open Autonomous Driving Competition; also tested on public roads | Competition YOLOv3: 99.08% (mAP) YOLOv3_tiny: 98.47% (mAP) Public Roads YOLOv3: 98.914% (mAP) YOLOv3_tiny: 95.584% (mAP) |
Ref. | Year | Authors | Method | Detection | Classification | Dataset | Performance |
---|---|---|---|---|---|---|---|
[39] | 2016 | Lange et al. | Caffe CNN | ✔ | ✖ | MadeInGermany | ~80% (precision) |
[52] | 2017 | Du et al. | PC-CNN | ✔ | ✖ | KITTI | 89.4% (AP) |
[53] | 2018 | Wu and Lin | OF + CNN (CaffeNet) | ✔ | ✖ | 7587 images | 97.9% (recall) |
[159] | 2018 | Neto et al. | Fuzzy-set-based approach | ✔ | ✔ | Different cameras in different scenarios | Ranging between 89.3–100% |
[11] | 2018 | Mittal et al. | Faster R-CNN, SVM | ✔ | ✔ | IITM-HeTra | 88.7% (AP): Two-wheelers; 98.6% (AP): light motor vehicles; 90.5% (AP): heavy motor vehicles |
[55] | 2019 | Shvai et al. | Ensemble classifiers: CNNs + Gradient boosting-based classifier | ✔ | ✔ | VINCI Autoroutes French network | 99.03% (Classification accuracy) |
[156] | 2020 | Zhu et al. | MME-YOLO | ✔ | ✖ | Roadside Dataset | 91.63% (mAP) |
[163] | 2020 | Wong et al. | CNN | ✔ | ✔ | 93.8% (accuracy) | |
[157] | 2021 | Huang et al. | M-YOLO (Mobilenet v2 + YOLO v3) | ✔ | ✖ | 5576 nighttime traffic scene pictures | 94.96% (AP) |
[158] | 2021 | Li et al. | Region-based CNN, Faster R-CNN | ✔ | ✖ | 2200 traffic images | 89.66% (mAP, Night-4) |
[54] | 2021 | Pillai et al. | Deep CNN | ✔ | ✔ | Vehicle type: TAU Vehicle Type Recognition Competition Dataset, CompCars Vehicle color: 15,601 vehicle images with eight color classes | 89% (vehicle classification accuracy), 95% (color classification accuracy) |
[162] | 2021 | Niroomand et al. | SSFCM (Semi-Supervised Fuzzy C-Mean) | ✖ | ✔ | Swiss Motor Vehicle Information System, Federal Office Technical Information, Vehicles Expert Partner | 84.78% (avg. accuracy) |
[164] | 2022 | Jiaoand Wang | YOLOv5, KF | ✔ | ✖ | Cooper Dr. and N. Lamar Blvd. Traffic images from Austin, Texas, USA | RMSE: 10 (KF), 40 (IoU-based algorithm) |
[12] | 2022 | Alam et al. | Gentle adaptive boosting algorithm + Haar-like features, HOG + SVM | ✔ | ✖ | 3000 images | 97% (AP for daytime), 94% (AP for nighttime) |
Ref. | Year | Authors | Method | Dataset | Performance |
---|---|---|---|---|---|
[167] | 1990 | Ali et al. | Moving objects detectors (MODS) | Image data acquisition with a CCD camera | N/A |
[19] | 1997 | Oren et al. | Wavelet template, bootstrapping, SVM | Database of frontal and rear images of people in outdoor and indoor scenes | Detection rate: 69.7% (81.6%) |
[20] | 1998 | Papageorgiou and Poggio | Overcomplete dictionary of Haar wavelets and SVM | Image data acquisition with digital image cameras and a digital video camera | Detection rate: > 80% |
[168] | 2000 | Zhao et al. | Stereo-based segmentation and neural network | Urban street scenes | Detection rate: 85.4% |
[57] | 2013 | Ouyang and Wang | CNN | Caltech and ETH | Avg. miss rate computed from AUC (%): ETH: 34% Caltech: 30% |
[186] | 2014 | Luo et al. | Switchable restricted Boltzmann machine (SRBM) | Caltech, ETH | Log-average miss rate: Caltech: 37.87% ETH: 40.63% |
[58] | 2015 | Fukui et al. | CNN-based random dropout and ensemble inference network (EIN) | Caltech, Daimler Mono Pedestrian Benchmark Dataset | Miss rate: Caltech: 37.77% Daimler Mono Pedestrian Benchmark: 31.34% |
[59] | 2015 | John et al. | Adaptive fuzzy c-means clustering and CNN | LSI | Log-average miss rate: 34% |
[179] | 2015 | Tian et al. | CNN (DeepParts) | Caltech | Miss rate: 11.89% |
[60] | 2016 | Schlosser et al. | CNN | KITTI | 9.3% improvement in best threshold on KITTI Hard subset |
[104] | 2016 | Liu et al. | Faster R-CNN, Multispectral DNN | KAIST | Miss rate: 36.99% |
[193] | 2017 | Du et al. | Fused deep neural network (F-DNN) | Caltech | Log-average miss rate for “All” setting: 50.55% |
[180] | 2018 | Zhang et al. | Faster R-CNN | CityPersons, Caltech, ETH | Log-average miss rate based on “Reasonable + Heavy occlusion (R + HO)” metric: CityPersons: 41.45% Caltech: 20.03% ETH: 35.64% |
[187] | 2018 | Li et al. | Scale-aware fast R-CNN (SAF R-CNN) | Caltech, INRIA, ETH, KITTI | Log-average miss rate: Caltech: 9.32% INRIA: 8.04% ETH: 34.64% AP on KITTI Hard subset: 60.42% |
[117] | 2022 | Zang et al. | Multi-direction and multi-scale Pyramid in Transformer (PiT) | MARS and iLIDS-VID | Cumulative matching characteristic (CMC) curve and mAP MARS CMC (Rank-10): 98.04% mAP: 86.80% iLIDS-VID CMC (Rank-10): 99.80% mAP: 100.0% |
Ref. | Year | Authors | Method | Dataset | Performance |
---|---|---|---|---|---|
[195] | 2012 | Gopalan et al. | Pixel- level feature descriptors, robust boosting algorithm | Visual inputs from a camera mounted in front of a vehicle | Accuracy in terms of the position error of detected lane markings: 5 × 5-pixel neighborhood, 93.5% |
[61] | 2014 | Kim and Lee | CNN + RANSAC | Complex video clips | Corrected detection rate: Case 1: 94.7.0% Case 2: 93.9% Case 3: 93.2% |
[62] | 2015 | Huval et al. | CNN | Highway dataset consisting of 17K image frames | F1 score: 100% up to 50 m |
[63] | 2017 | Li et al. | Multitask deep CNN + RNN | Video clips (own dataset), Caltech dataset | AUC values: Own dataset: RNN: 99% – Caltech dataset: RNN: Set 1: 99%, Set 2: 93%, Set 3: 96%, Set 4: 99% |
[196] | 2017 | Lee et al. | Vanishing point guided network (VPGNet) | 20000 images with 17 lane and road marking classes (own dataset), Caltech dataset | F1 score values: Own dataset: Scenario 1: 87%; Scenario 2: 78.8%; Scenario 3: 76.8%; Scenario 4: 74.3% Caltech dataset Set 1: 88.4%; Set 2: 86.9% |
[200] | 2018 | Wang et al. | LaneNet: lane edge proposal + lane line localization | Real-world traffic data; more than 5000 annotated front-view images taken on both highways and urban roads | True positive rate (TPR): 97.9% False positive rate (FPR): 2.7% |
[201] | 2019 | Hou et al. | Self-attention distillation (SAD) | TuSimple, CULane, and BDD100K | Accuracy for TuSimple: ResNet-18-SAD: 96.02% ResNet-34-SAD: 96.24% ENet-SAD: 96.64% – Accuracy for BDD100K: ResNet-18-SAD: 31.10% ResNet-34-SAD: 32.68% ENet-SAD: 36.56% – F1 Score for CULane (Category Normal): ResNet-18-SAD: 89.8% ResNet-34-SAD: 89.9% ENet-SAD: 90.1% |
[202] | 2019 | Van Gansbeke et al. | Generating coordinate weight map + a differentiable least-squares fitting module | TuSimple | Accuracy: 95.80% |
[105] | 2021 | Dewangan and Sahu | U-Net, Seg-Net, fully convolutional network (FCN) | Camvid | Mean intersection over union (mIoU) value: U-Net: 94%; Seg-Net: 92%; FCN: 86% |
[26] | 2022 | Liu et al. | Reinforced attention method (RAM) | CULane, TuSimple | Accuracy for CULane: 90.80% Accuracy for TuSimple: 96.26% |
Ref. | Year | Authors | Method | Supporting Methods | Detection Category | Other Features |
---|---|---|---|---|---|---|
[235] | 2007 | Gavrila and Munder | SV and IS | ROI | Pedestrians | – |
[209] | 2007 | Shen et al. | OF | ROI | Obstacles | – |
[236] | 2007 | Kubota et al. | SV | – | Obstacles | Results at night and in the rain |
[237] | 2007 | Ma et al. | IS | Inverse perspective mapping | Pedestrians | Results in foggy and rainy weather |
[221] | 2008 | Franke et al. | SV and OF | Occupancy grid map | Obstacles | – |
[238] | 2008 | Cabani et al. | SV and IS | – | Obstacles | – |
[239] | 2008 | Suganuma et al. | SV | – | Obstacles | Vehicle recognition in a tunnel |
[240] | 2009 | Keller et al. | SV | ROI | Pedestrians | – |
[241] | 2009 | Chiu et al. | SV and HOG | – | Vehicles | Results at night and on rainy days |
[242] | 2009 | Ess et al. | SV and IS | Occupancy grid map | Pedestrians | – |
[243] | 2009 | Ma et al. | IS | ROI, occupancy grid map | Pedestrians | – |
[231] | 2010 | Hota et al. | HOG, cascade classifiers, Haar-like features | – | Vehicles | – |
[106] | 2010 | Walk et al. | SV, HOG, HoF | – | Pedestrians | – |
[244] | 2010 | Li et al. | SV | – | Obstacles | – |
[108] | 2010 | Pantilie and Nedevschi | SV and OF | – | Obstacles | – |
[245] | 2011 | Baig et al. | SV | ROI | Vehicles | Vehicle recognition in a tunnel |
[246] | 2011 | Nieto et al. | IS | ROI | Vehicles | Vehicle recognition in a tunnel |
[247] | 2011 | Na et al. | SV | – | Vehicles | – |
[248] | 2012 | Iwata and Saneyoshi | SV | – | Obstacles | – |
[249] | 2012 | Boroujeni et al. | IS and OF | – | Obstacles | – |
[250] | 2012 | Lefebvre and Ambellouis | SV and IS | – | Vehicles | – |
[107] | 2013 | Liu et al. | Forward–Backward error algorithm and OF | – | Obstacles | – |
[251] | 2013 | Trif et al. | SV and IS | – | Vehicles | – |
[252] | 2013 | Khalid et al. | SV and IS | ROI | Vehicles | – |
[253] | 2014 | Petrovai et al. | SV and IS | ROI | Obstacles | – |
[254] | 2014 | Iloie et al. | SV and HOG | ROI | Pedestrians | – |
[255] | 2015 | Poddar et al. | IS | – | Obstacles | – |
[256] | 2015 | Jia et al. | OF | – | Obstacles | – |
[218] | 2015 | Benacer et al. | SV | – | Obstacles | – |
[257] | 2016 | Wu et al. | SV and IS | ROI | Obstacles | – |
[258] | 2016 | Carrillo and Sutherland | SV and IS | ROI | Obstacles | – |
[224] | 2016 | Redmon et al. | YOLOv3 | – | Obstacles | – |
[259] | 2017 | Häne et al. | SV | Occupancy grid map | Obstacles | Cameras around the vehicle |
[260] | 2017 | Prabhakar et al. | Neural network | – | Obstacles | Some results in rainy weather |
[64] | 2017 | He et al. | Mask R-CNN | – | Obstacles | – |
[109] | 2018 | Dairi et al. | SV, deep stacked autoencoder (AE), k-nearest neighbors | – | Obstacles | – |
[228] | 2018 | Dairi et al. | Neural network, SV | One-class SVM | Obstacles | – |
[261] | 2018 | Li et al. | Neural network | – | Obstacles | – |
[262] | 2019 | Fan et al. | Neural network | – | Obstacles | – |
[229] | 2019 | Lian et al. | Neural network, SV | – | Obstacles | – |
[206] | 2019 | Zebbara et al. | IS | – | Vehicles | – |
[263] | 2019 | Hsieh et al. | Neural network | – | Obstacles | – |
[264] | 2020 | Ohgushi et al. | AE with semantic segmentation | – | Obstacles | – |
[265] | 2021 | He et al. | FE-YOLO | Attention mechanism, Downsample-Block, spatial pyramid pooling (SPP) module, CRBlock | Obstacles | Rail crossing obstacle detection |
[110] | 2022 | Ci et al. | DeepLabV3, open-set recognition algorithm | Bayesian probabilistic fusion | Obstacles | – |
[266] | 2022 | Luo et al. | SV | V-disparity image, U-disparity, Stixel method, RANSAC, dynamic programming (DP) algorithm | Obstacles | Obstacle prediction, real-time obstacle detection |
[267] | 2022 | Du et al. | Wasserstein loss-based YOLO model | – | Obstacles | Real-time traffic obstacle detection and classification, different weather conditions, different urban environmental conditions |
Ref. | Year | Authors | Method | Datasets | ||
---|---|---|---|---|---|---|
CUHK Avenue [281] | UCSD Ped1 [269] | UCSD Ped2 [269] | ||||
[288] | 2015 | Yan et al. | Two-stream R-ConvVAE | 79.6% | 75.0% | 91.7% |
[289] | 2016 | Hasan et al. | ConvAE | 70.2% | 81.0% | 90.0% |
[290] | 2016 | Colque et al. | Histogram of optical flow (HOF) | N/A | 72.7% | 87.5% |
[272] | 2017 | Chong and Tay | ST-AE | 80.3% | 89.9% | 87.4% |
[89] | 2017 | Lu et al. | ConvLSTM-AE | 77.0% | 75.5% | 88.1% |
[291] | 2017 | Zhao et al. | 3D-ConvAE | 80.9% | 92.3% | 91.2% |
[292] | 2018 | Lee et al. | STAN | 87.2% | 82.1% | 96.5% |
[293] | 2018 | Kiran et al. | CovnLSTM-AE | 84% | 74% | 81% |
[273] | 2018 | Liu et al. | Flownet + U-Net | 85.1% | 83.1% | 95.4% |
[102] | 2019 | Duman and Erdem | OF-ConvAE-LSTM | 89.5% | 92.4% | 92.9% |
[91] | 2019 | Li et al. | U-Net, ConvLSTM | 84.5% | 83.8% | 96.5% |
[294] | 2019 | Zhou et al. | AnomalyNet | 86.1% | 83.5% | 94.9% |
[96] | 2019 | Song et al. | GAN | 89.2% | 90.5% | 90.7% |
[295] | 2019 | Vu et al. | Multi-level anomaly detector (MLAD) | 52.82% | 82.34% | 99.21% |
[296] | 2020 | Chen et al. | U-Net | 87.8% | 89% | 96.6% |
[297] | 2020 | Nawaratne et al. | Incremental spatiotemporal learner (ISTL) | 76.8% | 75.2% | 91.1% |
[298] | 2020 | Sun et al. | Adversarial 3D AE | 88.9% | 90.2% | 91.1% |
[299] | 2020 | Bansod and Nandedkar | Histogram of magnitude and momentum (HoMM) | N/A | 82.31% | 94.16% |
[97] | 2020 | Ganokratanaa et al. | Deep spatiotemporal translation network (DSTN) based on GAN and edge wrapping (EW) | 87.9% | 98.5% | 95.5% |
[300] | 2020 | Song et al. | Ada-Net (adversarial attention-based AE) | 89.2% | 90.4% | 90.3% |
[95] | 2021 | Jackson and Cuzzolin | Singular-value decomposition GAN (SVD-GAN) | 89.82 % | 73.26% | 76.98% |
[301] | 2021 | Li et al. | Spatial-temporal cascade autoencoder (ST-CaAE) | 83.5% | 90.5% | 92.9% |
[98] | 2021 | Chen et al. | Noise-modulated GAN (NM-GAN) | 88.6% | 90.7% | 96.3% |
[68] | 2022 | Sabih and Vishwakarma | CNN + bidirectional LSTM (Bi-LSTM) | N/A | 94.8% | 96.5% |
[92] | 2022 | Wang et al. | Double-flow convolutional LSTM variational autoencoder (DF-ConvLSTM-VAE) | 87.2% | 88.4% | 88.8% |
[302] | 2022 | Le and Kim | Attention-based residual autoencoder | 86.7% | N/A | 97.4% |
[99] | 2022 | Huang et al. | Self-supervised attentive GAN (SSAGAN) | 88.8% | 92.1% | 97.6% |
[94] | 2022 | Wang et al. | ROADMAP (multipath ConvGRU-based frame prediction network) | 88.3% | 83.4% | 96.3% |
Ref. | Year | Authors | Method | Application | Performance |
---|---|---|---|---|---|
[347] | 1993 | Shan et al. | STRUM, SVM, Adaboost, Ran | Crack detection in bridges | 95% (accuracy) |
[348] | 2010 | Ying et al. | Median filter, Hessian Matrix, probabilistic relaxation | Crack detection on noisy concrete surfaces | 99.03% (AUC) |
[310] | 2012 | Zou et al. | Recursive tree edge pruning | Pavement crack detection | 85% (F-measure) |
[349] | 2012 | Landstrom and Thurley | Feature pyramid and hierarchical boosting network (FPHBN) | Pavement crack detection | 8.1% (average intersection over union; AIU) |
[70] | 2016 | Zhang et al. | Deep CNN | Road crack detection | 86.86% (precision), 92.51% (recall), 89.65% (F1 score) |
[23] | 2016 | Shan et al. | K-means clustering, Gaussian models | Road crack detection | 97% (F-measure) |
[69] | 2017 | Zhang et al. | CrackNet (based on CNN) | Pavement crack detection | 90.13% (precision), 87.63% (recall), 88.86% (F-measure) |
[111] | 2017 | Cha et al. | CNN + sliding window technique | Detection of cracks in concrete and routing surfaces | 97% (accuracy) |
[325] | 2017 | Cha and Choi | Deep CNN (DCNN) | Crack detection | 99.09% (accuracy) |
[327] | 2018 | Dorafshan et al. | CNN (AlexNet) | Crack detection | 98% (accuracy) |
[75] | 2018 | Li and Zhao | CNN (GoogLeNet) | Crack detection | 99.39% (accuracy) |
[350] | 2018 | Zhang et al. | Canny edge detector, dilate operators, Frangi filter | Crack detection in bridges | 98.7% (accuracy) |
[351] | 2018 | Yang et al. | CNN (VGG-19) | Crack detection | 97.96% (accuracy) |
[352] | 2019 | Kim et al. | CNN + SURF | Crack detection | 99.46% (accuracy) |
[331] | 2019 | Dung and Anh | DCNN | Crack detection | 98.47% (accuracy) |
[353] | 2019 | Bang et al. | ResNet-152 | Crack detection | 59.65% (accuracy) |
[354] | 2019 | Hoang et al. | Transfer learning (CNN) | Crack detection | 95.1% (recall) |
[335] | 2019 | Fei et al. | CNN (VGG-16) | Crack detection | 85.9% (mIoU) |
[339] | 2020 | Li et al. | VGG + Inception | Crack detection | 95.8% (accuracy) |
[113] | 2020 | Liu et al. | YOLOv3 + U-Net (ResNet-32) | Crack detection | 95.75% (F1 score) |
[355] | 2020 | Ibragimov et al. | Faster R-CNN | Crack detection | 78.88% (AP) |
[342] | 2020 | Zhang et al. | ALPCNet (Mask R-CNN and AFFM) | Crack detection | 93.53% (F1 score) |
[332] | 2020 | Ren et al. | DCNN | Crack detection | 99.12% (accuracy) |
[356] | 2020 | Huyan et al. | U-Net | Crack detection | 99.01% (accuracy) |
[341] | 2020 | Yamane and Chun | Mask R-CNN | Crack detection | 99.15% (accuracy) |
[338] | 2020 | Li and Zhao | CedNet (DenseNet-121) | Crack detection | 98.9% (accuracy) |
[343] | 2020 | Choi and Cha | SDDNet | Crack detection | 88.0% (mIoU) 84.6% (mIoU) |
[357] | 2020 | Feng et al. | SegNet | Crack detection | 66.76% (IoU) |
[358] | 2020 | Dong et al. | U-Net-ResNet with PAM | Crack detection | 96.3% (accuracy) |
[77] | 2021 | Nyugen et al. | CNN | Detection of road defects | > 91% (F1 score) |
[359] | 2021 | Zhou et al. | Canny algorithm, decision tree heuristic | Crack detection | 88% (Accuracy) |
[112] | 2022 | Kortmann et al. | YOLOv4-Tiny, YOLOv4-CSP for road damage detection; VAE for severity classification | Road damage detection | 42.1% (mAP for Tiny) 51% (mAP for CSP) for road damage detection, 80% for severity classification |
[360] | 2022 | Sun et al. | DMA-Net (enhanced DeepLabv3+ model) | Crack detection and segmentation | Crack500 Dataset: 69.5% (precision), 80.0% (recall), 74.4% (F1 score) - DeepCrack Dataset: 86.9% (precision), 87.1% (recall), 87% (F1 score) |
Ref. | Year | Authors | Method | Application | Performance |
---|---|---|---|---|---|
[367] | 2003 | Na and Oh | MLP, modified potential field (MPF) method | Safe and stable navigation to a specific destination in any environment; object recognition | N/A |
[79] | 2016 | Bojarski et al. | End-to-end learning with CNN | Determining the appropriate steering angle to ensure the vehicle can stay in its lane | 98% (autonomy) |
[363] | 2017 | Kim and Park | Sequential end-to-end transfer learning | Predicting left and right ego-lanes | >80% |
[82] | 2017 | Chen and Huang | End-to-end learning with CNN | Determining the appropriate steering angle to ensure the vehicle can stay in its lane | N/A |
[368] | 2017 | Ozcelik et al. | RGB→HSV conversion, SVM | Detection and recognition of traffic lights | 95% (accuracy in urban areas), 88% (accuracy in traffic areas) |
[93] | 2017 | Kim and Canny | CNN, LSTM | Interpretable learning for driverless cars by visualizing causal attention; steering angle estimation | MAE btw. 1.18–4.15 |
[364] | 2018 | Maqueda et al. | ResNet18, ResNet50 | Vehicle steering angle estimation | RMSE: 4.100 EVA (explained variance): 0.826 for Events input |
[81] | 2019 | Nose et al. | End-to-end learning with CNN | Determining the appropriate steering angle to ensure the vehicle can stay in its lane | Loss: ~0.3 |
[86] | 2019 | Chen et al. | Brain-inspired cognitive model with attention (CMA), CNN, RNN, attention mechanism, LSTM |
| Precision: 98.16%, Recall: 97.51%, F1: 97.82% in urban traffic (free space detection perf.) Precision: 99.9% in highway traffic (lane boundary detection perf.) |
[13] | 2019 | Vishal et al. | YOLO, SVM | Traffic light recognition | 94% (F1 score) |
[369] | 2021 | Khan et al. | Pre-trained MobileNetV2 | Pedestrian traffic light classification | 94.92% (accuracy) |
[370] | 2021 | Fang and Cai | ResNet18 + YOLOv3, PID algorithm | Obstacle detection and target tracking | 94.12% (accuracy) |
[115] | 2021 | Benamer et al. | DL and CV | Obstacle detection; traffic sign recognition; lane-keeping and proper decision-making | N/A |
[80] | 2022 | Farkh et al. | CNN | Estimating the appropriate steering angle to ensure the vehicle can stay in its lane | N/A |
[118] | 2022 | Wang et al. | FPT (fusion of a transformer and a CNN) | Detection of driver distraction | 99.91% (accuracy for State Farm driver- detection dataset) |
[371] | 2022 | Wang et al. | Improved YOLOv4 | Detecting and recognizing traffic lights | Detection: 97.58% (AUC for LISA dataset), 95.85% (AUC for LaRa dataset) - Recognition: 82.15% (mAP for LISA dataset) 79.97% (mAP for LaRa dataset) |
[154] | 2022 | Marques et al. | YOLOv3 and YOLOv3_tiny | Real-time traffic sign/traffic light detection and recognition | Competition YOLOv3: 99.08% (mAP) - YOLOv3_tiny: 98.47% (mAP) - Public Road YOLOv3: 98.914% (mAP) - YOLOv3_tiny: 95.584% (mAP) |
[372] | 2022 | Gao et al. | Channel attention and multidimensional regression loss (CAMRL) | 3D object (vehicle, pedestrian, cyclist) recognition | AP3D|R40 E (easy), M (moderate), H (hard) Vehicle: E: 17.12, M: 11.58, H: 9.03 - Pedestrian: E: 6.04, M: 3.85, H: 3.12 - Cyclist: E: 1.82, M: 1.15, H: 1.01 |
[373] | 2022 | Cervera-Uribe and Méndez-Monroy | U19-Net | Obstacle (vehicle and pedestrian) detection | 87.08% (accuracy for vehicle), 78.18% (accuracy for pedestrian) |
[374] | 2022 | Song et al. | Real-time obstacle detection via simultaneous refinement (RODSNet) | Real-time obstacle detection | IoU 97.9% (road), 73.8% (sidewalk), 91.9% (building), 71.7% (traffic light), 78.2% (traffic sign), 79.8% (pedestrian), 94.1% (car), 84.3% (bus) 74.1% (mIoU) |
Ref. | Year | Authors | Method | Application | Performance |
---|---|---|---|---|---|
[376] | 2015 | Makantasis et al. | CNN, MLP | Fully automatic tunnel inspection; detection of concrete defects in tunnels | 88.6% (accuracy) |
[386] | 2016 | Ardestani et al. | S-T map generation, noise removal, Canny edge filtering (CEF), moving-window horizontal-line detection (MWHLD) | Detection of red-light signal time from low-resolution CCTV cameras | 96.83% and 100% (detection rates for starting and ending times respectively) |
[377] | 2017 | Ramos et al. | CNN | Detection of minor road hazards | 82.8% (detection rate) |
[378] | 2017 | Sun et al. | DxNAT, CNN | Predicting non-recurring traffic jams; identifying non-recurring traffic anomalies caused by specific events | 98.73% (accuracy) |
[78] | 2017 | Chen et al. | Cascaded CNN | Defect inspection of catenary support devices | 89.2% (mAP) |
[375] | 2018 | Xue and Li | FCN | Automatic intelligent classification and detection of tunnel lining defects; tunnel inspection | 95.84% (accuracy) |
[387] | 2018 | Zaatouri and Ezzedine | YOLOv3, transfer learning | Optimization of signal phases with real-time traffic light control algorithm based on traffic flow | N/A |
[388] | 2019 | Qi et al. | SSD | Automatic traffic volume analysis at road junctions | 81% (detection: mAP@10 FPS) |
[383] | 2020 | Garg | Haar Cascade classifiers | Drowsiness and fatigue detection | 100% (accuracy) |
[389] | 2020 | Wyk et al. | CNN + KF | Anomaly detection in autonomous and connected vehicles | 99.7% (accuracy) |
[379] | 2021 | Acharya et al. | Deep CNN + SVM | Parking occupancy detection | 99.7%, 96.7% (accuracy) |
[380] | 2021 | Pan et al. | ResNet50 | Real-time winter road surface condition monitoring; snow and ice detection using traffic cameras | 95.18% (accuracy) |
[24] | 2021 | Hurtado-Gómez et al. | YOLOv3, reinforcement learning | Traffic signal control system (vehicle counting, queue detection, traffic signal time recommendation) | 92.67% (avg. recall), 100% (avg. precision) |
[390] | 2021 | Shepelev et al. | YOLOv3 | Estimation of traffic flow parameters based on tracking of speed values | N/A |
[391] | 2021 | Umair et al. | Deep simple online and realtime tracking (Deep SORT), YOLOv4 | Vehicle counting; vehicle queue length estimation | 82.60% (accuracy for vehicle counting), 92.67% (accuracy for queue length estimation) |
[38] | 2022 | Ghahremannezhad et al. | YOLOv4, KF, Hungarian algorithm, trajectory conflict analysis | Real-time accident detection using traffic cameras | 93.1% (accuracy) |
[392] | 2022 | Gao et al. | COCO-pretrained Mask R-CNN (for curb lane occupancy detection), COCO-pretrained YOLOv3 (for illegal parking detection) | Data collection and analytical approach for curb lane monitoring and illegal parking impact assessment | 86–96% (detection rates for parking and bus lane occupancy), 79–86% (precision/recall values for illegal parking events |
[384] | 2022 | Guerrieri and Parla | YOLOv3 | Detecting pedestrians, vehicles, and cyclists along a tram route | 96–100% (detection rate) |
[393] | 2022 | Ahmed et al. | Multi-CNN deep model (MTCNN) + Ensemble deep learning (two InceptionV3 modules) | Automatic drowsiness detection | 97.1% (accuracy) |
[164] | 2022 | Jiao and Wang | YOLOv5, KF | Vehicle detection and tracking from traffic videos; determination of traffic flows turning in different directions; estimation of vehicle speed and location | RMSE: 10 (KF), 40 (IoU-based algorithm) |
[394] | 2022 | Rahman et al. | HOG + Linear SVM face detector, CNN | Drowsy driving and face mask detection | 97.44% (accuracy in fatigue detection), 97.90% (accuracy in face mask identification) |
Economic | Environmental | Social |
---|---|---|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dilek, E.; Dener, M. Computer Vision Applications in Intelligent Transportation Systems: A Survey. Sensors 2023, 23, 2938. https://doi.org/10.3390/s23062938
Dilek E, Dener M. Computer Vision Applications in Intelligent Transportation Systems: A Survey. Sensors. 2023; 23(6):2938. https://doi.org/10.3390/s23062938
Chicago/Turabian StyleDilek, Esma, and Murat Dener. 2023. "Computer Vision Applications in Intelligent Transportation Systems: A Survey" Sensors 23, no. 6: 2938. https://doi.org/10.3390/s23062938
APA StyleDilek, E., & Dener, M. (2023). Computer Vision Applications in Intelligent Transportation Systems: A Survey. Sensors, 23(6), 2938. https://doi.org/10.3390/s23062938