A Survey of Deep Learning Based NOMA: State of the Art, Key Aspects, Open Challenges and Future Trends
Abstract
Share and Cite
Mohsan, S.A.H.; Li, Y.; Shvetsov, A.V.; Varela-Aldás, J.; Mostafa, S.M.; Elfikky, A. A Survey of Deep Learning Based NOMA: State of the Art, Key Aspects, Open Challenges and Future Trends. Sensors 2023, 23, 2946. https://doi.org/10.3390/s23062946
Mohsan SAH, Li Y, Shvetsov AV, Varela-Aldás J, Mostafa SM, Elfikky A. A Survey of Deep Learning Based NOMA: State of the Art, Key Aspects, Open Challenges and Future Trends. Sensors. 2023; 23(6):2946. https://doi.org/10.3390/s23062946
Chicago/Turabian StyleMohsan, Syed Agha Hassnain, Yanlong Li, Alexey V. Shvetsov, José Varela-Aldás, Samih M. Mostafa, and Abdelrahman Elfikky. 2023. "A Survey of Deep Learning Based NOMA: State of the Art, Key Aspects, Open Challenges and Future Trends" Sensors 23, no. 6: 2946. https://doi.org/10.3390/s23062946
APA StyleMohsan, S. A. H., Li, Y., Shvetsov, A. V., Varela-Aldás, J., Mostafa, S. M., & Elfikky, A. (2023). A Survey of Deep Learning Based NOMA: State of the Art, Key Aspects, Open Challenges and Future Trends. Sensors, 23(6), 2946. https://doi.org/10.3390/s23062946