A Model Transfer Method among Spectrometers Based on Improved Deep Autoencoder for Concentration Determination of Heavy Metal Ions by UV-Vis Spectra
Abstract
:1. Introduction
2. Method
2.1. Fundamentals of Autoencoder Theory
2.2. Model Transfer Method Based on Improved Deep Autoencoder
Algorithm 1: Model transfer algorithm based on an autoencoder | |
Input: The master spectrometer data X, slave spectrometer data Y; | |
Output: The reconstructed data after model transfer from the instrument; | |
1 | Main procedure |
2 | Bias B and weight W in the autoencoder neural network of the master and slave instrument are randomly initialized. The parameters such as training times and learning rate of the model are set; |
3 | Compute the hidden layer variables and , calculate the optimization objective function and optimize the whole model; |
4 | Optimized the hyperparameters of the autoencoder according to the Bayesian optimization algorithm, and the bias B and weight W were updated continuously by the gradient descent method until the optimal objective function value was found; |
5 | Save the slave encoder and the master decoder models to form the model transfer structure based on the improved autoencoder. |
3. Results and Discussion
3.1. Experimental Data Set
3.2. Model Transfer Evaluation and Sample Number Selection
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiao, H.; Sun, K.; Sun, Y.; Wei, K.; Tu, K.; Pan, L. Comparison of benchtop Fourier-transform (FT) and portable grating scanning spectrometers for determination of total soluble solid contents in single grape berry (Vitis vinifera L.) and calibration transfer. Sensors 2017, 17, 2693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, F.; Cheng, X.; Peng, C.; Jia, R.; Chen, T.; Wei, Q. A process transfer model-based optimal compensation control strategy for batch process using just-in-time learning and trust region method. J. Frankl. Inst. 2021, 358, 606–632. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, R.; Ge, J.; Chen, W.; Yang, W.; Du, Y. Calibration transfer based on the weight matrix (CTWM) of PLS for near infrared (NIR) spectral analysis. Anal. Methods 2018, 10, 2169–2179. [Google Scholar] [CrossRef]
- Wang, Y.; Veltkamp, D.J.; Kowalski, B.R. Multivariate instrument standardization. Anal. Chem. 1991, 63, 2750–2756. [Google Scholar] [CrossRef]
- Da Silva, N.C.; Pimentel, M.F.; Honorato, R.S.; Talhavini, M.; Maldaner, A.O.; Honorato, F.A. Classification of Brazilian and foreign gasolines adulterated with alcohol using infrared spectroscopy. Forensic Sci. Int. 2015, 253, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lysaght, M.J.; Kowalski, B.R. Improvement of multivariate calibration through instrument standardization. Anal. Chem. 1992, 64, 562–564. [Google Scholar] [CrossRef]
- Dangal, S.R.; Sanderman, J. Is standardization necessary for sharing of a large mid-infrared soil spectral library? Sensors 2020, 20, 6729. [Google Scholar] [CrossRef]
- Zeng, J.; Ping, W.; Sanaeifar, A.; Xu, X.; Luo, W.; Sha, J.; Huang, Z.; Huang, Y.; Liu, X.; Zhan, B.; et al. Quantitative visualization of photosynthetic pigments in tea leaves based on Raman spectroscopy and calibration model transfer. Plant Methods 2021, 17, 4. [Google Scholar] [CrossRef]
- Binfeng, Y.; Haibo, J. Near-infrared calibration transfer via support vector machine and transfer learning. Anal. Methods 2015, 7, 2714–2725. [Google Scholar] [CrossRef]
- Zhou, C.; Yu, W.; Huang, K.; Zhu, H.; Li, Y.; Yang, C.; Sun, B. A new model transfer strategy among spectrometers based on SVR parameter calibrating. IEEE Trans. Instrum. Meas. 2021, 70, 1–13. [Google Scholar] [CrossRef]
- Lima, F.; Borges, L. Evaluation of standardisation methods of near infrared calibration models. J. Near Infrared Spectrosc. 2002, 10, 269–278. [Google Scholar] [CrossRef]
- Brito, A.L.B.; Santos, A.V.P.; Milanez, K.D.T.M.; Pontes, M.J.C.; Pontes, L.F.B.L. Calibration transfer of flour NIR spectra between benchtop and portable instruments. Anal. Methods 2017, 9, 3184–3190. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, W.; Shao, X. Standardization of near infrared spectra measured on multi-instrument. Anal. Chim. Acta 2014, 836, 18–23. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, Z.; Li, M.; Lu, C.; Deng, W.W.; Zhang, Z.; Ning, J. From lab to factory: A calibration transfer strategy from HSI to online NIR optimized for quality control of green tea fixation. J. Food Eng. 2023, 339, 111284. [Google Scholar] [CrossRef]
- Alves, J.C.L.; Poppi, R.J. Pharmaceutical analysis in solids using front face fluorescence spectroscopy and multivariate calibration with matrix correction by piecewise direct standardization. Spectrochimica Acta Part A Mol. Biomol. Spectrosc. 2013, 103, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Parrott, A.J.; McIntyre, A.C.; Holden, M.; Colquhoun, G.; Chen, Z.P.; Littlejohn, D.; Nordon, A. Calibration model transfer in mid-infrared process analysis with in situ attenuated total reflectance immersion probes. Anal. Methods 2022, 14, 1889–1896. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Li, C.; Wang, Z.; Chen, Y. Algorithm of Stability-Analysis-Based Feature Selection for NIR Calibration Transfer. Sensors 2022, 22, 1659. [Google Scholar] [CrossRef]
- Chen, Y.y.; Wang, Z.b. Cross components calibration transfer of NIR spectroscopy model through PCA and weighted ELM-based TrAdaBoost algorithm. Chemom. Intell. Lab. Syst. 2019, 192, 103824. [Google Scholar] [CrossRef]
- Folch-Fortuny, A.; Vitale, R.; De Noord, O.E.; Ferrer, A. Calibration transfer between NIR spectrometers: New proposals and a comparative study. J. Chemom. 2017, 31, e2874. [Google Scholar] [CrossRef]
- Galvão, R.K.H.; Soares, S.F.C.; Martins, M.N.; Pimentel, M.F.; Araújo, M.C.U. Calibration transfer employing univariate correction and robust regression. Anal. Chim. Acta 2015, 864, 1–8. [Google Scholar] [CrossRef]
- Chen, W.R.; Bin, J.; Lu, H.M.; Zhang, Z.M.; Liang, Y.Z. Calibration transfer via an extreme learning machine auto-encoder. Analyst 2016, 141, 1973–1980. [Google Scholar] [CrossRef] [PubMed]
- Feudale, R.N.; Tan, H.; Brown, S.D. Piecewise orthogonal signal correction. Chemom. Intell. Lab. Syst. 2002, 63, 129–138. [Google Scholar] [CrossRef]
- Ahmad, M.; Shabbir, S.; Oliva, D.; Mazzara, M.; Distefano, S. Spatial-prior generalized fuzziness extreme learning machine autoencoder-based active learning for hyperspectral image classification. Optik 2020, 206, 163712. [Google Scholar] [CrossRef]
- Vasafi, P.S.; Paquet-Durand, O.; Brettschneider, K.; Hinrichs, J.; Hitzmann, B. Anomaly detection during milk processing by autoencoder neural network based on near-infrared spectroscopy. J. Food Eng. 2021, 299, 110510. [Google Scholar] [CrossRef]
- Deepthi, K.; Jereesh, A. Inferring potential CircRNA–disease associations via deep autoencoder-based classification. Mol. Diagn. Ther. 2021, 25, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Alqarni, M.A.; Khan, A.M.; Hussain, R.; Mazzara, M.; Distefano, S. Segmented and non-segmented stacked denoising autoencoder for hyperspectral band reduction. Optik 2019, 180, 370–378. [Google Scholar] [CrossRef] [Green Version]
- Munir, N.; Park, J.; Kim, H.J.; Song, S.J.; Kang, S.S. Performance enhancement of convolutional neural network for ultrasonic flaw classification by adopting autoencoder. NDT E Int. 2020, 111, 102218. [Google Scholar] [CrossRef]
- Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.A.; Bottou, L. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 2010, 11, 3371–3408. [Google Scholar]
- Algamal, Z.Y.; Qasim, M.K.; Lee, M.H.; Ali, H.T.M. Improving grasshopper optimization algorithm for hyperparameters estimation and feature selection in support vector regression. Chemom. Intell. Lab. Syst. 2021, 208, 104196. [Google Scholar] [CrossRef]
- Kennard, R.W.; Stone, L.A. Computer aided design of experiments. Technometrics 1969, 11, 137–148. [Google Scholar] [CrossRef]
Method | ||
---|---|---|
Before model transfer | 3.5727 | 0.8211 |
DS | 4.2391 | 0.5841 |
PDS | 5.0269 | 0.5149 |
Proposed method | 6.1517 | 0.3252 |
RMSE | Cu | Co | Fe |
---|---|---|---|
Before model transfer | 0.426 | 0.397 | 0.443 |
DS | 0.295 | 0.198 | 0.146 |
PDS | 0.084 | 0.161 | 0.138 |
Proposed method | 0.021 | 0.025 | 0.047 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Shang, Y.; Wan, Q.; Cheng, F.; Hu, H.; Wu, T. A Model Transfer Method among Spectrometers Based on Improved Deep Autoencoder for Concentration Determination of Heavy Metal Ions by UV-Vis Spectra. Sensors 2023, 23, 3076. https://doi.org/10.3390/s23063076
Zhu H, Shang Y, Wan Q, Cheng F, Hu H, Wu T. A Model Transfer Method among Spectrometers Based on Improved Deep Autoencoder for Concentration Determination of Heavy Metal Ions by UV-Vis Spectra. Sensors. 2023; 23(6):3076. https://doi.org/10.3390/s23063076
Chicago/Turabian StyleZhu, Hongqiu, Yi Shang, Qilong Wan, Fei Cheng, Haonan Hu, and Tiebin Wu. 2023. "A Model Transfer Method among Spectrometers Based on Improved Deep Autoencoder for Concentration Determination of Heavy Metal Ions by UV-Vis Spectra" Sensors 23, no. 6: 3076. https://doi.org/10.3390/s23063076
APA StyleZhu, H., Shang, Y., Wan, Q., Cheng, F., Hu, H., & Wu, T. (2023). A Model Transfer Method among Spectrometers Based on Improved Deep Autoencoder for Concentration Determination of Heavy Metal Ions by UV-Vis Spectra. Sensors, 23(6), 3076. https://doi.org/10.3390/s23063076