Revealing Local Temporal Profile of Laser Pulses of Intensity above 1014 W/cm2
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walmsley, I.; Dorrer, C. Characterization of ultrashort electromagnetic pulses. Adv. Opt. Photon. 2009, 1, 308–437. [Google Scholar] [CrossRef]
- Diels, J.C.M.; Fontaine, J.J.; McMichael, I.C.; Simoni, F. Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy. Appl. Opt. 1985, 24, 1270–1282. [Google Scholar] [CrossRef]
- Gliserin, A.; Chew, S.H.; Kim, S.; Kim, D.E. Complete characterization of ultrafast optical fields by phase-preserving nonlinear autocorrelation. Light Sci. Appl. 2022, 11, 277. [Google Scholar] [CrossRef] [PubMed]
- Trebino, R.; DeLong, K.W.; Fittinghoff, D.N.; Sweetser, J.N.; Krumbügel, M.A.; Richman, B.A.; Kane, D.J. Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating. Rev. Sci. Instrum. 1997, 68, 3277–3295. [Google Scholar] [CrossRef]
- Iaconis, C.; Walmsley, I.A. Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses. Opt. Lett. 1998, 23, 792–794. [Google Scholar] [CrossRef] [PubMed]
- Birge, J.R.; Crespo, H.M.; Krtner, F.X. Theory and design of two-dimensional spectral shearing interferometry for few-cycle pulse measurement. J. Opt. Soc. Am. 2010, 27, 1165–1173. [Google Scholar] [CrossRef]
- Miranda, M.; Fordell, T.; Arnold, C.; L’Huillier, A.; Crespo, H. Simultaneous compression and characterization of ultrashort laser pulses using chirped mirrors and glass wedges. Opt. Express 2012, 20, 688–697. [Google Scholar] [CrossRef] [Green Version]
- Gomes, T.; Canhota, M.; Crespo, H. Temporal characterization of broadband femtosecond laser pulses by surface third-harmonic dispersion scan with ptychographic retrieval. Opt. Lett. 2022, 47, 3660–3663. [Google Scholar] [CrossRef]
- Sayler, A.M.; Rathje, T.; Müller, W.; Kürbis, C.; Rühle, K.; Stibenz, G.; Paulus, G.G. Real-time pulse length measurement of few-cycle laser pulses using above-threshold ionization. Opt. Express 2011, 19, 4464–4471. [Google Scholar] [CrossRef]
- Aközbek, N.; Bowden, C.M.; Talebpour, A.; Chin, S.L. Femtosecond pulse propagation in air: Variational analysis. Phys. Rev. E 2000, 61, 4540–4549. [Google Scholar] [CrossRef] [Green Version]
- Couairon, A.; Berge, L. Light filaments in air for ultraviolet and infrared wavelengths. Phys. Rev. Lett. 2002, 88, 135003. [Google Scholar] [CrossRef]
- Qin, Y.D.; Yang, H.; Zhu, C.J.; Gong, Q.H. Intense femtosecond laser-induced second-harmonic generation in atmospheric-pressure air. Appl. Phys. B Lasers Opt. 2000, 71, 581–584. [Google Scholar] [CrossRef]
- Beresna, M.; Kazansky, P.G.; Svirko, Y.; Barkauskas, M.; Danielius, R. High average power second harmonic generation in air. Appl. Phys. Lett. 2009, 95, 121502. [Google Scholar] [CrossRef] [Green Version]
- Li, G.H.; Ni, J.L.; Xie, H.Q.; Zeng, B.; Yao, J.P.; Chu, W.; Zhang, H.S.; Jing, C.R.; He, F.; Xu, H.L.; et al. Second harmonic generation in centrosymmetric gas with spatiotemporally focused intense femtosecond laser pulses. Opt. Lett. 2014, 39, 961–964. [Google Scholar] [CrossRef]
- Mitryukovskiy, S.I.; Liu, Y.; Houard, A.; Mysyrowicz, A. Re-evaluation of the peak intensity inside a femtosecond laser filament in air. J. Phys. B At. Mol. Opt. Phys. 2015, 48, 094003. [Google Scholar] [CrossRef]
- Couairon, A.; Brambilla, E.; Corti, T.; Majus, D.; de Ramírez-Góngora, O.J.; Kolesik, M. Practitioner’s guide to laser pulse propagation models and simulation. Eur. Phys. J. Spec. Top. 2011, 199, 5–76. [Google Scholar] [CrossRef]
- Kolesik, M.; Moloney, J.V. Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations. Phys. Rev. E 2004, 70, 036604. [Google Scholar] [CrossRef]
- Dalgarno, A.; Kingston, A.E. The refractive indices and Verdet constants of the inert gases. Proc. R. Soc. Lond. 1960, 259, 424–431. [Google Scholar] [CrossRef]
- Raizer, Y.P. Gas Discharge Physics, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Keldysh, L.V. Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 1965, 20, 1307–1314. [Google Scholar]
- Perelomov, A.M.; Popov, V.S.; Terentev, M.V. Ionization of atoms in an alternating electric filed. Zh. Eksp. Teor. Fiz. 1966, 50, 1393. [Google Scholar]
- Shcheblanov, N.S.; Povarnitsyn, M.E.; Terekhin, P.N.; Guizard, S.; Couairon, A. Nonlinear photoionization of transparent solids: A nonperturbative theory obeying selection rules. Phys. Rev. A 2017, 96, 063410. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Q.; Zhang, X.; Couairon, A.; Liu, Y. Revealing Local Temporal Profile of Laser Pulses of Intensity above 1014 W/cm2. Sensors 2023, 23, 3101. https://doi.org/10.3390/s23063101
Lu Q, Zhang X, Couairon A, Liu Y. Revealing Local Temporal Profile of Laser Pulses of Intensity above 1014 W/cm2. Sensors. 2023; 23(6):3101. https://doi.org/10.3390/s23063101
Chicago/Turabian StyleLu, Qi, Xiang Zhang, Arnaud Couairon, and Yi Liu. 2023. "Revealing Local Temporal Profile of Laser Pulses of Intensity above 1014 W/cm2" Sensors 23, no. 6: 3101. https://doi.org/10.3390/s23063101