Fusion of GNSS Pseudoranges with UWB Ranges Based on Clustering and Weighted Least Squares
Abstract
:1. Introduction
2. Employed Positioning Technologies
2.1. Global Navigation Satellite Systems (GNSSs)
2.2. Ultra-Wide Band (UWB)
3. Multi-Sensor Positioning
3.1. Clustering Methods
3.1.1. Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
- Core Points;
- Border Points; and
- Noise.
3.1.2. DBSCAN-Derived Clustering Method
3.2. Weighted Least Squares (WLS)
3.2.1. Functional Model
3.2.2. Stochastic Model: A Priori
- the observation’s variance-covariance matrix ;
- the observation’s cofactor matrix ; and
- the weights matrix P.
3.2.3. Adjusted Observations and Unknown Values
3.3. Functional Model Definition
3.3.1. UWB-Only Model
3.3.2. GNSS-Only Model
3.3.3. GNSS/UWB Fusion Model
4. Data Collection Campaign
4.1. Survey Area and Scenario
4.2. Sensors
4.3. Employed Processing Software
4.4. Determination of the Ground Truth
5. Results
5.1. Ranging Assessment
5.1.1. Evaluation of UWB Ranging Data
5.1.2. Evaluation of GNSS Ranging Data
5.1.3. Evaluation of GNSS and UWB Fused Range Data
5.2. Positioning Performance
5.2.1. Positioning with UWB-Only WLS
5.2.2. Positioning with GNSS-Only WLS
5.2.3. Positioning with GNSS/UWB WLS
6. Concluding Remarks and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gabela, J.; Retscher, G.; Goel, S.; Perakis, H.; Masiero, A.; Toth, C.; Gikas, V.; Kealy, A.; Koppanyi, Z.; Błaszczak-Bąk, W.; et al. Experimental Evaluation of a UWB based Cooperative Positioning System for Pedestrians in GNSS Denied Environment. Sensors 2019, 19, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masiero, A.; Toth, C.; Gabela, J.; Retscher, G.; Kealy, A.; Perakis, H.; Gikas, V.; Grejner-Brzezinska, D.A. Experimental Assessment of UWB and Vision-Based Car Cooperative Positioning System. Remote Sens. 2021, 13, 4858. [Google Scholar] [CrossRef]
- Hofmann-Wellenhof, B.; Lichtenegger, H.; Wasle, E. GNSS—Global Navigation Satellite Systems—GPS, GLONASS, Galileo, and More; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Awange, J. GNSS Environmental Sensing—Revolutionizing Environmental Monitoring; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Teunissen, P.J.G.; de Jonge, P.J.; Tiberius, C.C.J.M. The LAMBDA-Method For Fast GPS Surveying. In Proceedings of the International Symposium “GPS Technology Applications”, Bucharest, Romania, 26–29 September 1995. [Google Scholar]
- Bažec, M.; Dimc, F.; Pavlovčič-Prešeren, P. Evaluating the Vulnerability of Several Geodetic GNSS Receivers under Chirp Signal L1/E1 Jamming. Sensors 2020, 20, 814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jade Morton, Y.; van Diggelen, F.; Spilker, J.J., Jr.; Parkinson, B.W.; Lo, S.; Gao, G. Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications; Wiley-IEEE Press: Hoboken, NJ, USA, 2020. [Google Scholar]
- Dabove, P.; Di Pietra, V.; Piras, M.; Jabbar, A.A.; Kazim, S.A. Indoor Positioning Using Ultra-wide band (UWB) Technologies: Positioning Accuracies and Sensors’ Performances. In Proceedings of the 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, CA, USA, 23–26 April 2018. [Google Scholar]
- Umek, A.; Tomažič, S.; Kos, A. Application for Impact Position Evaluation in Tennis Using UWB Localization. Procedia Comput. Sci. 2022, 147, 307–313. [Google Scholar] [CrossRef]
- Mautz, R. Indoor Positioning Technologies. Geodetic-Geophysical Reports of Switzerland; Swiss Geodetic Commission: Basel, Switzerland, 2012; Volume 86, 134p, ISBN 978-3-908440-31-4. [Google Scholar]
- Retscher, G. Navigation—User Requirements, State-of-the-Art and Developments for Smartphone Localization. Geomatics 2023, 3, 1–46. [Google Scholar] [CrossRef]
- Retscher, G. Fundamental Concepts and Evolution of Wi-Fi User Localization: An Overview Based on Different Case Studies. Sensors 2020, 20, 5121. [Google Scholar] [CrossRef] [PubMed]
- Pietrzyk, M.M.; von der Grün, T. Ultra-wideband Technology-based Ranging Platform with Real-time Signal Processing. In Proceedings of the 4th International Conference on Signal Processing and Communication Systems, Gold Coast, QLD, Australia, 13–15 December 2010; p. 5. [Google Scholar]
- Conti, A.; Dardari, D.; Win, M.Z. Experimental Results on Cooperative UWB-based Positioning Systems. In Proceedings of the 2008 IEEE International Conference on Ultra-Wideband, Hannover, Germany, 10–12 September 2008. [Google Scholar]
- Mazhar, F.; Gufran Khan, M.; Sällberg, B. Precise Indoor Positioning Using UWB: A Review of Methods, Algorithms and Implementations. Sensors 2017, 19, 4467–4491. [Google Scholar] [CrossRef]
- Ridolfi, M.; Vandermeeren, S.; Defraye, J.; Steendam, H.; Gerlo, J.; De Clercq, D.; Hoebeke, J.; De Poorter, E. Experimental Evaluation of UWB Indoor Positioning for Sport Postures. Sensors 2018, 18, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perakis, H.; Gikas, V. Evaluation of Range Error Calibration Models for Indoor UWB Positioning Applications. In Proceedings of the 2018 International Conference on Indoor Positioning and Indoor Navigation IPIN, Nantes, France, 24–27 September 2018. [Google Scholar]
- TimeDomain RangeNet Application Programming Interface (API) Specification—PulsON 400 Series User Manual. 2015. Available online: https://cdn2.hubspot.net/hubfs/4072898/320-0313H%20RangeNet%20API\protect\T1\textdollar20Specification.pdf (accessed on 12 April 2022).
- Pozyx. Multi Technology RTLS: Indoor–Outdoor. Report, Charles Stark Draper Laboratory (P-4994) Cambridge, MA 02139 USA, 2022. 2022. Available online: https://www.pozyx.io/ (accessed on 12 April 2022).
- Retscher, G.; Kealy, A.; Gabela, J.; Li, Y.; Goel, S.; Toth, C.K.; Masiero, A.; Błaszczak-Bąk, W.; Gikas, V.; Perakis, H.; et al. A Benchmarking Measurement Campaign in GNSS-denied/challenged Indoor/outdoor and Transitional Environments. J. Appl. Geod. 2020, 14, 215–229. [Google Scholar] [CrossRef]
- Santos Martinez-Sala, A.; Losilla, F.; Sánchez-Aarnoutse, J.; García-Haro, J. Design, Implementation and Evaluation of an Indoor Navigation System for Visually Impaired People. Sensors 2015, 15, 32168–32187. [Google Scholar] [CrossRef]
- Liu, R.; Deng, Z.; Cao, Z.; Shalihan, M.; Lau, B.P.L.; Chen, K.; Bhowmik, K.; Yuen, C.; Tan, U.X. Distributed Ranging SLAM for Multiple Robots with Ultra-WideBand and Odometry Measurements. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022), Kyoto, Japan, 23–27 October 2022. [Google Scholar] [CrossRef]
- Amini, A.; Wah, T.; Saboohi, H. On Density-based Data Streams Clustering Algorithms: A Survey. J. Comput. Sci. Technol. 2014, 29, 116–141. [Google Scholar] [CrossRef]
- Khan, M.M.R.; Siddique, M.A.B.; Arif, R.B.; Oishe, M.R. ADBSCAN: Adaptive Density-Based Spatial Clustering of Applications with Noise for Identifying Clusters with Varying Densities. In Proceedings of the 4th IEEE International Conference on Electrical Engineering and Information & Communication Technology (iCEEiCT 2018), Kyoto, Japan, 23–27 October 2022. [Google Scholar] [CrossRef]
- Shah, G.H. An Improved DBSCAN, A Density Based Clustering Algorithm with Parameter Selection for High Dimensional Data Sets. In Proceedings of the 2012 Nirma University International Conference on Engineering (NuiCONE 2012), Ahmedabad, India, 6–8 December 2012; pp. 1–6. [Google Scholar]
- Hu, X.; Liu, L.; Qiu, N.; Yang, D.; Li, M. A MapReduce-based Improvement Álgorithm for DBSCAN. J. Algorithms Comput. Technol. 2017, 12, 53–61. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.P.; Sander, J.; C Xu, X. A Density-Based Algorithm for Discovering Clusters. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland, OR, USA, 2–4 August 1996; p. 6. [Google Scholar]
- Wang, R.; Xiong, Z.; Liu, J. Resilient Fusion Navigation Techniques: Collaboration in Swarm; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Gikas, V.; Retscher, G.; Kealy, A. Collaborative Positioning for Urban Intelligent Transportation Systems (ITS) and Personal Mobility (PM): Challenges and Perspectives; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Yavari, M.; Nickerson, B. Ultra Wideband Wireless Positioning Systems. In Report TR14-230; Department Fac. Computing Science, University of New Brunswick: Fredericton, NB, Canada, 2014. [Google Scholar]
- Stephen, S. Apple’s U1 Chip, Android Boost UWB Tech That Lets Your Phone Unlock Your Car. Available online: https://www.cnet.com/tech/mobile/apples-u1-chip-and-android-brings-uwb-location-tech-to-your-car-or-home (accessed on 18 July 2022).
- Institute, E.E.T.S. Ultra Wide Band. Available online: https://www.etsi.org/technologies/ultra-wide-band?jjj=1596015945046 (accessed on 18 July 2022).
- Flueratoru, L.; Wehrli, S.; Magno, M.; Niculescu, D. On the Energy Consumption and Ranging Accuracy of Ultra-wideband Physical Interfaces. In Proceedings of the IEEE Global Communications Conference GLOBECOM 2020, Taipei, Taiwan, 7–11 December 2020; pp. 1–7. [Google Scholar]
- Wang, W.; Liu, Z.; Gao, J.; Saoda, N.; Campbell, B. UbiTrack: Enabling Scalable & Low-cost Device Localization with Onboard Wi-Fi. In Proceedings of the 8th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, Coimbra, Portugal, 17–18 November 2021; pp. 11–20. [Google Scholar]
GP No. | AP No. | Avg. | Median | Max. | Min. | |
---|---|---|---|---|---|---|
G1 | P20 | −0.352 | −0.367 | −0.143 | −0.880 | 0.123 |
P18 | 0.259 | 0.268 | 0.280 | 0.190 | 0.020 | |
P19’ | −0.048 | −0.045 | 0.509 | −0.273 | 0.085 | |
P07’ | 0.032 | 0.030 | 0.097 | 0.012 | 0.014 | |
G2 | P20 | 0.030 | 0.034 | 0.073 | −0.152 | 0.030 |
P18 | −0.157 | −0.167 | 0.235 | −0.209 | 0.046 | |
P19’ | 0.050 | 0.050 | 0.401 | −0.201 | 0.058 | |
P07’ | 0.014 | 0.039 | 0.159 | −0.211 | 0.096 | |
G3 | P20 | |||||
P18 | −0.030 | −0.032 | 0.013 | −0.333 | 0.042 | |
P19’ | −0.002 | 0.007 | 0.064 | −0.299 | 0.036 | |
P07’ | 0.169 | 0.161 | 1.091 | −0.114 | 0.177 | |
G4 | P20 | |||||
P18 | ||||||
P19’ | 0.133 | 0.130 | 0.378 | 0.118 | 0.028 | |
P07’ | 0.056 | 0.063 | 0.130 | −0.210 | 0.048 | |
G5 | P20 | −0.111 | −0.115 | −0.031 | −0.123 | 0.013 |
P18 | ||||||
P19’ | ||||||
P07’ | ||||||
G6 | P20 | −0.039 | −0.035 | −0.025 | −0.078 | 0.011 |
P18 | 0.617 | 0.624 | 0.697 | 0.400 | 0.066 | |
P19’ | ||||||
P07’ | 0.824 | 0.818 | 0.862 | 0.808 | 0.015 | |
G7 | P20 | 1.473 | 1.461 | 1.987 | 1.443 | 0.058 |
P18 | −0.968 | −0.969 | −0.994 | −0.880 | 0.018 | |
P19’ | 1.236 | 1.233 | 1.285 | 1.192 | 0.016 | |
P07’ | −1.344 | −1.349 | −1.576 | −1.269 | 0.035 |
PNo. | Avg. | Median | Max. | Min. | |
---|---|---|---|---|---|
G1 | 0.317 | 0.317 | 0.353 | 0.312 | 0.034 |
G2 | 0.850 | 0.849 | 0.900 | 0.804 | 0.019 |
G3 | 0.513 | 0.513 | 0.532 | 0.484 | 0.013 |
G4 | 4.024 | 4.024 | 4.102 | 3.917 | 0.023 |
G5 | 7.800 | 7.797 | 7.819 | 7.795 | 0.014 |
G6 | 1.049 | 1.054 | 1.008 | 0.972 | 0.046 |
G7 | 2.693 | 2.797 | 3.034 | 1.807 | 0.396 |
PNo. | Avg. | Median | Max. | Min. | |
---|---|---|---|---|---|
G1 | 0.095 | 0.096 | 0.271 | 0.267 | 0.040 |
G2 | 0.002 | 0.002 | 0.089 | 0.072 | 0.015 |
G3 | 0.009 | 0.008 | 1.007 | 0.132 | 0.084 |
G4 | 0.008 | 0.008 | 0.140 | 0.110 | 0.022 |
G5 | 0.515 | 0.505 | 0.891 | 0.432 | 0.072 |
G6 | 1.006 | 1.007 | 0.987 | 0.975 | 0.034 |
G7 | 1.941 | 1.988 | 2.171 | 1.439 | 0.290 |
PNo. | Avg. | Median | Max. | Min. | |
---|---|---|---|---|---|
G1 | 0.161 | 0.165 | 0.077 | 0.234 | 0.034 |
G2 | 0.076 | 0.075 | 0.134 | 0.063 | 0.019 |
G3 | 0.016 | 0.015 | 0.071 | 0.043 | 0.013 |
G4 | 0.437 | 0.437 | 0.514 | 0.391 | 0.023 |
G5 | 0.516 | 0.515 | 0.490 | 0.545 | 0.014 |
G6 | 0.985 | 0.989 | 0.896 | 0.958 | 0.046 |
G7 | 3.574 | 3.693 | 3.911 | 2.527 | 0.396 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Retscher, G.; Kiss, D.; Gabela, J. Fusion of GNSS Pseudoranges with UWB Ranges Based on Clustering and Weighted Least Squares. Sensors 2023, 23, 3303. https://doi.org/10.3390/s23063303
Retscher G, Kiss D, Gabela J. Fusion of GNSS Pseudoranges with UWB Ranges Based on Clustering and Weighted Least Squares. Sensors. 2023; 23(6):3303. https://doi.org/10.3390/s23063303
Chicago/Turabian StyleRetscher, Günther, Daniel Kiss, and Jelena Gabela. 2023. "Fusion of GNSS Pseudoranges with UWB Ranges Based on Clustering and Weighted Least Squares" Sensors 23, no. 6: 3303. https://doi.org/10.3390/s23063303
APA StyleRetscher, G., Kiss, D., & Gabela, J. (2023). Fusion of GNSS Pseudoranges with UWB Ranges Based on Clustering and Weighted Least Squares. Sensors, 23(6), 3303. https://doi.org/10.3390/s23063303