High Selectivity Hydrogen Gas Sensor Based on WO3/Pd-AlGaN/GaN HEMTs
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Archer, D.; Brovkin, V. The millennial atmospheric lifetime of anthropogenic CO2. Clim. Chang. 2008, 90, 283–297. [Google Scholar] [CrossRef]
- Ebi, K.L.; Hallegatte, S.; Kram, T.; Arnell, N.W.; Carter, T.R.; Edmonds, J.; Kriegler, E.; Mathur, R.; O’Neill, B.C.; Riahi, K.; et al. A new scenario framework for climate change research: Background, process, and future directions. Clim. Chang. 2014, 122, 363–372. [Google Scholar] [CrossRef]
- Hawkins, E.; Ortega, P.; Suckling, E.; Schurer, A.; Hegerl, G.; Jones, P.; Joshi, M.; Osborn, T.J.; Masson-Delmotte, V.; Mignot, J.; et al. Estimating Changes in Global Temperature since the Preindustrial Period. Bull. Am. Meteorol. Soc. 2017, 98, 1841–1856. [Google Scholar] [CrossRef]
- Ehlert, D.; Zickfeld, K. What determines the warming commitment after cessation of CO2 emissions? Environ. Res. Lett. 2017, 12, 015002. [Google Scholar] [CrossRef]
- King, A.D.; Donat, M.G.; Lewis, S.C.; Henley, B.J.; Mitchell, D.M.; Stott, P.A.; Fischer, E.M.; Karoly, D.J. Reduced heat exposure by limiting global warming to 1.5 °C. Nat. Clim. Chang. 2018, 8, 549–551. [Google Scholar] [CrossRef]
- Döll, P.; Trautmann, T.; Gerten, D.; Schmied, H.M.; Ostberg, S.; Saaed, F.; Schleussner, C.-F. Risks for the global freshwater system at 1.5 °C and 2 °C global warming. Environ. Res. Lett. 2018, 13, 044038. [Google Scholar] [CrossRef]
- Available online: https://www.esrl.noaa.gov/gmd/ccgg/trends/ (accessed on 8 March 2022).
- Cane, M.A.; Clement, A.C.; Kaplan, A.; Kushnir, Y.; Pozdnyakov, D.; Seager, R.; Zebiak, S.E.; Murtugudde, R. Twentieth-Century Sea Surface Temperature Trends. Science 1997, 275, 957–960. [Google Scholar] [CrossRef]
- Pollack, H.N.; Huang, S.; Shen, P.-Y. Climate Change Record in Subsurface Temperatures: A Global Perspective. Science 1998, 282, 279–281. [Google Scholar] [CrossRef]
- DiMeo, F.; Chen, I.; Chen, P.; Neuner, J.; Roerhl, A.; Welch, J. MEMS-based hydrogen gas sensors. Sens. Actuators B Chem. 2006, 117, 10–16. [Google Scholar] [CrossRef]
- Wong, Y.M.; Kang, W.P.; Davidson, J.L.; Wisitsora-at, A.; Soh, K.L. A novel microelectronic gas sensor utilizing carbon nanotubes for hydrogen gas detection. Sens. Actuators B Chem. 2003, 93, 327–332. [Google Scholar] [CrossRef]
- Lupan, O.; Chai, G.; Chow, L. Novel hydrogen gas sensor based on single ZnO nanorod. Microelectron. Eng. 2008, 85, 2220–2225. [Google Scholar] [CrossRef]
- Kaniyoor, A.; Imran Jafri, R.; Arockiadoss, T.; Ramaprabhu, S. Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor. Nanoscale 2009, 1, 382–386. [Google Scholar] [CrossRef]
- Nakagomi, S.; Sai, T.; Kokubun, Y. Hydrogen gas sensor with self temperature compensation based on β-Ga2O3 thin film. Sens. Actuators B Chem. 2013, 187, 413–419. [Google Scholar] [CrossRef]
- Kang, B.S.; Ren, F.; Gila, B.P.; Abernathy, C.R.; Pearton, S.J. AlGaN/GaN-based metal–oxide–semiconductor diode-based hydrogen gas sensor. Appl. Phys. Lett. 2004, 84, 1123–1125. [Google Scholar] [CrossRef]
- Song, J.; Lu, W.; Flynn, J.S.; Brandes, G.R. AlGaN/GaN Schottky diode hydrogen sensor performance at high temperatures with different catalytic metals. Solid State Electron. 2005, 49, 1330–1334. [Google Scholar] [CrossRef]
- Hung, S.-T.; Chang, C.-J.; Hsu, C.-H.; Chu, B.H.; Lo, C.F.; Hsu, C.-C.; Pearton, S.J.; Holzworth, M.R.; Whiting, P.G.; Rudawski, N.G.; et al. SnO2 functionalized AlGaN/GaN high electron mobility transistor for hydrogen sensing applications. Int. J. Hydrog. Energy 2012, 37, 13783–13788. [Google Scholar] [CrossRef]
- Zhong, A.; Sun, A.; Shen, B.; Yu, H.; Zhou, Y.; Liu, Y.; Xie, Y.; Luo, J.; Zhang, D.; Fan, P. Tailoring the H2 gas detection range of the AlGaN/GaN high electron mobility transistor by tuning the Pt gate thickness. Int. J. Hydrog. Energy 2022, 47, 2050–2058. [Google Scholar] [CrossRef]
- Ahn, J.; Kim, D.; Park, K.-H.; Yoo, G.; Heo, J. Pt-Decorated Graphene Gate AlGaN/GaN MIS-HEMT for Ultrahigh Sensitive Hydrogen Gas Detection. IEEE Trans. Electron. Devices 2021, 68, 1255–1261. [Google Scholar] [CrossRef]
- Chung, G.H.; Vuong, T.A.; Kim, H. Demonstration of hydrogen sensing operation of AlGaN/GaN HEMT gas sensors in extreme environment. Results Phys. 2019, 12, 83–84. [Google Scholar] [CrossRef]
- Sun, A.; Yu, H.; Zhou, Y.; Liu, Y.; Luo, J.; Fan, P.; Zhong, A. Pd gated AlGaN/GaN high electron mobility transistor for ppb level hydrogen gas detection. Int. J. Hydrog. Energy 2022, 47, 17494–17503. [Google Scholar] [CrossRef]
- Choi, J.-H.; Jo, M.-G.; Han, S.-W.; Kim, H.; Kim, S.-H.; Jang, S.; Kim, J.-S.; Cha, H.-Y. Hydrogen gas sensor of Pd-functionalised AlGaN/GaN heterostructure with high sensitivity and low-power consumption. Electron. Lett. 2017, 53, 1200–1202. [Google Scholar] [CrossRef]
- Shen, B.; Luo, J.; Xie, Y.; Zhang, D.; Fan, P.; Zhong, A. Hydrogen gas ppb-level detection based on AlGaN/GaN high electron mobility transistor with 2.0 nm thick Pt gate layer. Appl. Phys. Lett. 2019, 115, 254104. [Google Scholar] [CrossRef]
- Tsai, T.-H.; Chen, H.-I.; Liu, I.-P.; Hung, C.-W.; Chen, T.-P.; Chen, L.-Y.; Liu, Y.-J.; Liu, W.-C. Investigation on a Pd–AlGaN/GaN Schottky Diode-Type Hydrogen Sensor with Ultrahigh Sensing Responses. IEEE Trans. Electron. Devices 2008, 55, 3575–3581. [Google Scholar] [CrossRef]
- Kang, B.; Wang, H.-T.; Tien, L.-C.; Ren, F.; Gila, B.; Norton, D.; Abernathy, C.; Lin, J.; Pearton, S. Wide Bandgap Semiconductor Nanorod and Thin Film Gas Sensors. Sensors 2006, 6, 643–666. [Google Scholar] [CrossRef]
- Halfaya, Y.; Bishop, C.; Soltani, A.; Sundaram, S.; Aubry, V.; Voss, P.; Salvestrini, J.-P.; Ougazzaden, A. Investigation of the Performance of HEMT-Based NO, NO2 and NH3 Exhaust Gas Sensors for Automotive Antipollution Systems. Sensors 2016, 16, 273. [Google Scholar] [CrossRef]
- Vuong, T.-A.; Cha, H.-Y.; Kim, H. Response Enhancement of Pt–AlGaN/GaN HEMT Gas Sensors by Thin AlGaN Barrier with the Source-Connected Gate Configuration at High Temperature. Micromachines 2021, 12, 537. [Google Scholar] [CrossRef]
- Ranjan, A.; Agrawal, M.; Radhakrishnan, K.; Dharmarasu, N. AlGaN/GaN HEMT-based high-sensitive NO2 gas sensors. Jpn. J. Appl. Phys. 2019, 58, SCCD23. [Google Scholar] [CrossRef]
- Bishop, C.; Halfaya, Y.; Soltani, A.; Sundaram, S.; Li, X.; Streque, J.; el Gmili, Y.; Voss, P.L.; Salvestrini, J.P.; Ougazzaden, A. Experimental Study and Device Design of NO, NO2, and NH3 Gas Detection for a Wide Dynamic and Large Temperature Range Using Pt/AlGaN/GaN HEMT. IEEE Sens. J. 2016, 16, 6828–6838. [Google Scholar] [CrossRef]
- Rýger, I.; Vanko, G.; Kunzo, P.; Lalinský, T.; Vallo, M.; Plecenik, A.; Satrapinský, L.; Plecenik, T. AlGaN/GaN HEMT Based Hydrogen Sensors with Gate Absorption Layers Formed by High Temperature Oxidation. Procedia Eng. 2012, 47, 518–521. [Google Scholar] [CrossRef]
- Lee, J.; Kim, D.H.; Hong, S.; Jho, J.Y. A hydrogen gas sensor employing vertically aligned TiO2 nanotube arrays prepared by template-assisted method. Sens. Actuators B Chem. 2011, 160, 1494–1498. [Google Scholar] [CrossRef]
- Matsumiya, M.; Qiu, F.; Shin, W.; Izu, N.; Murayama, N.; Kanzaki, S. Thin-film Li-doped NiO for thermoelectric hydrogen gas sensor. Thin Solid Films 2002, 419, 213–217. [Google Scholar] [CrossRef]
- Li, H.; Wu, C.; Liu, Y.; Yuan, S.; Chiang, Z.; Zhang, S.; Wu, R. Mesoporous WO3-TiO2 heterojunction for a hydrogen gas sensor. Sens. Actuators B Chem. 2021, 341, 130035. [Google Scholar] [CrossRef]
- Mondal, B.; Basumatari, B.; Das, J.; Roychaudhury, C.; Saha, H.; Mukherjee, N. ZnO–SnO2 based composite type gas sensor for selective hydrogen sensing. Sens. Actuators B Chem. 2014, 194, 389–396. [Google Scholar] [CrossRef]
- Lee, E.; Hwang, I.; Cha, J.; Lee, H.; Lee, W.; Pak, J.J.; Lee, J.; Ju, B. Micromachined catalytic combustible hydrogen gas sensor. Sens. Actuators B Chem. 2011, 153, 392–397. [Google Scholar] [CrossRef]
- Matsumiya, M.; Shin, W.; Izu, N.; Murayama, N. Nano-structured thin-film Pt catalyst for thermoelectric hydrogen gas sensor. Sens. Actuators B Chem. 2003, 93, 309–315. [Google Scholar] [CrossRef]
- Kim, K.T.; Sim, J.; Cho, S.M. Hydrogen gas sensor using Pd nanowires electro-deposited into anodized alumina template. IEEE Sens. J. 2006, 6, 509–513. [Google Scholar]
- Yoon, J.; Kim, B.; Kim, J. Design and fabrication of micro hydrogen gas sensors using palladium thin film. Mater. Chem. Phys. 2012, 133, 987–991. [Google Scholar] [CrossRef]
- Im, Y.; Lee, C.; Vasquez, R.; Bangar, M.; Myung, N.; Menke, E.; Penner, R.; Yun, M. Investigation of a Single Pd Nanowire for Use as a Hydrogen Sensor. Small 2006, 2, 356–358. [Google Scholar] [CrossRef]
- Soleimanpour, A.M.; Khare, S.V.; Jayatissa, A.H. Enhancement of Hydrogen Gas Sensing of Nanocrystalline Nickel Oxide by Pulsed-Laser Irradiation. ACS Appl. Mater. Interfaces 2012, 4, 4651–4657. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, J.-Y.; Mirzaei, A.; Kim, H.; Kim, S. Significant Enhancement of Hydrogen-Sensing Properties of ZnO Nanofibers through NiO Loading. Nanomaterials 2018, 8, 902. [Google Scholar] [CrossRef]
- Hazra, S.K.; Basu, S. Hydrogen sensitivity of ZnO p–n homojunctions. Sens. Actuators B Chem. 2006, 117, 177–182. [Google Scholar] [CrossRef]
- Cai, Z.; Park, S. A superior sensor consisting of porous, Pd nanoparticle–decorated SnO2 nanotubes for the detection of ppb-level hydrogen gas. J. Alloys Compd. 2022, 907, 164459. [Google Scholar] [CrossRef]
- Weh, T.; Fleischer, M.; Meixner, H. Optimization of physical filtering for selective high temperature H2 sensors. Sens. Actuators B Chem. 2000, 68, 146–150. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Chu, M.H.; Nguyen, D.H.; Nguyen, V.D.; Dang, T.T.L.; Nguyen, T.T.H.; Nguyen, N.V.; Phan, H.P.; Nguyen, V.H. Enhanced NH3 and H2 gas sensing with H2S gas interference using multilayer SnO2/Pt/WO3 nanofilms. J. Hazard. Mater. 2021, 412, 125181. [Google Scholar]
- Lim, S.H.; Kim, H.K. Deposition Rate Effect on Optical and Electrical Properties of Thermally Evaporated WO3−x/Ag/WO3−x Multilayer Electrode for Transparent and Flexible Thin Film Heaters. Sci. Rep. 2020, 10, 8357. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Boudiba, A.; Olivier, M.; Snyders, R.; Debliquy, M. Magnetron sputtered tungsten oxide films activated by dip-coated platinum for ppm-level hydrogen detection. Thin Solid Films 2012, 520, 3679–3683. [Google Scholar] [CrossRef]
- Zhang, C.; Boudiba, A.; Olivier, M.; Snyders, R.; Debliquy, M. Sensing properties of Pt/Pd activated tungsten oxide films grown by simultaneous radio-frequency sputtering to reducing gases. Sens. Actuators B Chem. 2012, 175, 53–59. [Google Scholar] [CrossRef]
- Nguyen, V.C.; Kim, K.; Kim, H. Performance Optimization of Nitrogen Dioxide Gas Sensor Based on Pd-AlGaN/GaN HEMTs by Gate Bias Modulation. Micromachines 2021, 12, 400. [Google Scholar] [CrossRef]
- Cantalini, C.; Sun, H.; Faccio, M.; Pelino, M.; Santucci, S.; Lozzi, L.; Passacantando, M. NO2 sensitivity of WO3 thin film obtained by high vacuum thermal evaporation. Sens. Actuators B Chem. 1996, 31, 81–87. [Google Scholar] [CrossRef]
- Prajapati, C.S.; Bhat, N. ppb level detection of NO2 using a WO3 thin film-based sensor: Material optimization, device fabrication and packaging. RSC Adv. 2018, 8, 6590–6599. [Google Scholar] [CrossRef]
- DeKock, R.L.; Gray, H.B. Chemical Structure and Bonding; University Science Books: New York, NY, USA, 1989; p. 85. [Google Scholar]
- Tournier, G.; Pijolat, C. Selective filter for SnO-based gas sensor: Application to hydrogen trace detection. Sens. Actuators B Chem. 2005, 106, 553–562. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, Q.; Zhang, S.; He, Z. The Enhanced H2 Selectivity of SnO2 Gas Sensors with the Deposited SiO2 Filters on Surface of the Sensors. Sensors 2019, 19, 2478. [Google Scholar] [CrossRef] [PubMed]
- Patton, J.F.; Hunter, S.R.; Sepaniak, M.J.; Daskos, P.G.; Smith, D.B. Rapid response microsensor for hydrogen detection using nanostructured palladium films. Sens. Actuator A Phys. 2010, 163, 464–470. [Google Scholar] [CrossRef]
- Korotcenkov, G. Handbook of Gas Sensor Materials; Springer: New York, NY, USA, 2013; pp. 153–163. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, V.C.; Cha, H.-Y.; Kim, H. High Selectivity Hydrogen Gas Sensor Based on WO3/Pd-AlGaN/GaN HEMTs. Sensors 2023, 23, 3465. https://doi.org/10.3390/s23073465
Nguyen VC, Cha H-Y, Kim H. High Selectivity Hydrogen Gas Sensor Based on WO3/Pd-AlGaN/GaN HEMTs. Sensors. 2023; 23(7):3465. https://doi.org/10.3390/s23073465
Chicago/Turabian StyleNguyen, Van Cuong, Ho-Young Cha, and Hyungtak Kim. 2023. "High Selectivity Hydrogen Gas Sensor Based on WO3/Pd-AlGaN/GaN HEMTs" Sensors 23, no. 7: 3465. https://doi.org/10.3390/s23073465
APA StyleNguyen, V. C., Cha, H.-Y., & Kim, H. (2023). High Selectivity Hydrogen Gas Sensor Based on WO3/Pd-AlGaN/GaN HEMTs. Sensors, 23(7), 3465. https://doi.org/10.3390/s23073465