Special Issue “Feature Papers in Biosensors Section 2022”
Acknowledgments
Conflicts of Interest
References
- Chmayssem, A.; Shalayel, I.; Marinesco, S.; Zebda, A. Investigation of GOx Stability in a Chitosan Matrix: Applications for Enzymatic Electrodes. Sensors 2023, 23, 465. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, S.; Pham, D.S.; Lau, M.P.H.; Nguyen, A.H.; Cao, H. A Low-Cost, 3D-Printed Biosensor for Rapid Detection of Escherichia coli. Sensors 2022, 22, 2382. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Wang, F.; Chao, J. Programmable Nanostructures Based on Framework-DNA for Applications in Biosensing. Sensors 2023, 23, 3313. [Google Scholar] [CrossRef] [PubMed]
- Kharkova, A.; Arlyapov, V.; Medvedeva, A.; Lepikash, R.; Melnikov, P.; Reshetilov, A. Mediator Microbial Biosensor Analyzers for Rapid Determination of Surface Water Toxicity. Sensors 2022, 22, 8522. [Google Scholar] [CrossRef] [PubMed]
- Kurbanalieva, S.; Arlyapov, V.; Kharkova, A.; Perchikov, R.; Kamanina, O.; Melnikov, P.; Popova, N.; Machulin, A.; Tarasov, S.; Saverina, E.; et al. Electroactive Biofilms of Activated Sludge Microorganisms on a Nanostructured Surface as the Basis for a Highly Sensitive Biochemical Oxygen Demand Biosensor. Sensors 2022, 22, 6049. [Google Scholar] [CrossRef] [PubMed]
- Elamin, M.B.; Ali, S.M.A.; Essousi, H.; Chrouda, A.; Alhaidari, L.M.; Jaffrezic-Renault, N.; Barhoumi, H. An Electrochemical Sensor for Sulfadiazine Determination Based on a Copper Nanoparticles/Molecularly Imprinted Overoxidized Polypyrrole Composite. Sensors 2023, 23, 1270. [Google Scholar] [CrossRef] [PubMed]
- Sut, T.N.; Park, H.; Koo, D.J.; Yoon, B.K.; Jackman, J.A. Distinct Binding Properties of Neutravidin and Streptavidin Proteins to Biotinylated Supported Lipid Bilayers: Implications for Sensor Functionalization. Sensors 2022, 22, 5185. [Google Scholar] [CrossRef] [PubMed]
- Wüstner, D. Dynamic Mode Decomposition of Fluorescence Loss in Photobleaching Microscopy Data for Model-Free Analysis of Protein Transport and Aggregation in Living Cells. Sensors 2022, 22, 4731. [Google Scholar] [CrossRef] [PubMed]
- Calabretta, M.M.; Gregucci, D.; Guarnieri, T.; Bonini, M.; Neri, E.; Zangheri, M.; Michelini, E. Bioluminescence Sensing in 3D Spherical Microtissues for Multiple Bioactivity Analysis of Environmental Samples. Sensors 2022, 22, 4568. [Google Scholar] [CrossRef] [PubMed]
- Gharehzadehshirazi, A.; Zarejousheghani, M.; Falahi, S.; Joseph, Y.; Rahimi, P. Biomarkers and Corresponding Biosensors for Childhood Cancer Diagnostics. Sensors 2023, 23, 1482. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Cascioli, V.; McCarthy, P.W. Healthcare Monitoring Using Low-Cost Sensors to Supplement and Replace Human Sensation: Does It Have Potential to Increase Independent Living and Prevent Disease? Sensors 2023, 23, 2139. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.C.; Lo, Y.-H. Non-Invasive Blood Flow Speed Measurement Using Optics. Sensors 2022, 22, 897. [Google Scholar] [CrossRef] [PubMed]
- Cardone, D.; Perpetuini, D.; Filippini, C.; Mancini, L.; Nocco, S.; Tritto, M.; Rinella, S.; Giacobbe, A.; Fallica, G.; Ricci, F.; et al. Classification of Drivers’ Mental Workload Levels: Comparison of Machine Learning Methods Based on ECG and Infrared Thermal Signals. Sensors 2022, 22, 7300. [Google Scholar] [CrossRef] [PubMed]
- Filippini, C.; Di Crosta, A.; Palumbo, R.; Perpetuini, D.; Cardone, D.; Ceccato, I.; Di Domenico, A.; Merla, A. Automated Affective Computing Based on Bio-Signals Analysis and Deep Learning Approach. Sensors 2022, 22, 1789. [Google Scholar] [CrossRef] [PubMed]
- Asogwa, C.O.; Nagano, H.; Wang, K.; Begg, R. Using Deep Learning to Predict Minimum Foot–Ground Clearance Event from Toe-Off Kinematics. Sensors 2022, 22, 6960. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez Viejo, C.; Fuentes, S. Digital Assessment and Classification of Wine Faults Using a Low-Cost Electronic Nose, Near-Infrared Spectroscopy and Machine Learning Modelling. Sensors 2022, 22, 2303. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, H.; Jaffrezic-Renault, N. Special Issue “Feature Papers in Biosensors Section 2022”. Sensors 2023, 23, 3704. https://doi.org/10.3390/s23073704
Ju H, Jaffrezic-Renault N. Special Issue “Feature Papers in Biosensors Section 2022”. Sensors. 2023; 23(7):3704. https://doi.org/10.3390/s23073704
Chicago/Turabian StyleJu, Huangxian, and Nicole Jaffrezic-Renault. 2023. "Special Issue “Feature Papers in Biosensors Section 2022”" Sensors 23, no. 7: 3704. https://doi.org/10.3390/s23073704
APA StyleJu, H., & Jaffrezic-Renault, N. (2023). Special Issue “Feature Papers in Biosensors Section 2022”. Sensors, 23(7), 3704. https://doi.org/10.3390/s23073704